
IEEE TRANSACTIONS ON MOBILE COMPUTING i

MagWear: Vital Sign Monitoring based on
Biomagnetism Sensing

Xiuzhen Guo, Member IEEE, Long Tan, Student Member IEEE, Chaojie Gu, Member IEEE,
Yuanchao Shu, Member IEEE, Shibo He, Member IEEE, Jiming Chen, Fellow IEEE

Abstract—This paper presents the design, implementation, and evaluation of MagWear, a novel biomagnetism-based system that can
accurately and inclusively monitor the heart rate, respiration rate, and blood pressure of users. MagWear’s contributions are twofold.
Firstly, we build a mathematical model that characterizes the magnetic coupling effect of blood flow under the influence of an external
magnetic field. This model uncovers the variations in accuracy when monitoring vital signs among individuals. Secondly, leveraging
insights derived from this mathematical model, we present a software-hardware co-design that effectively handles the impact of human
diversity on the performance of vital sign monitoring, pushing this generic solution one big step closer to real adoptions. Following
IRB protocols, our extensive experiments involving 30 volunteers demonstrate that MagWear achieves high monitoring accuracy with a
mean percentage error (MPE) of 1.55% for heart rate (HR), 1.79% for respiration rate (RR), 3.35% for systolic blood pressure (SBP),
and 3.89% for diastolic blood pressure (DBP). MagWear can also be extended to detect anemia and blood oxygen saturation, which is
also our ongoing work. Code and hardware schematics can be found at: https://github.com/tanwork/MagWear.

Index Terms—Wearable Health, Mobile Computing, Magnetic Sensing
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1 INTRODUCTION

Vital sign monitoring, such as tracking the heart rate (HR) and
respiration rate (RR), has become a popular functionality on smart
wearables. By continuously monitoring the vital signs of the
wearer, these wearable devices enable a broad spectrum of health-
care applications, including sleep monitoring, fitness tracking, and
health issue alerting.

Nowadays, smartwatches [1], [2], [3] have emerged as the pri-
mary choice for continuous vital sign monitoring among various
types of wearables. These smartwatches adopt Photoplethysmog-
raphy (PPG) sensor that emits an LED beam onto the skin. The
LED signal is mirrored back based on the blood volume circulating
through the wrist’s veins. The PPG waveform contains the pattern
of the blood volume variations occurring between the systolic and
diastolic phases of the cardiac cycle. The frequency of the PPG
signal reflects the heart rate (HR) and respiration rate (RR). We
can further leverage the filter to separate these two vital signs.

Despite their convenience, existing PPG-based smartwatches
still face several crucial challenges that limit their ability to
accurately monitor vital signs across diverse populations.
• Firstly, PPG sensors are shown to be less accurate in people

with dark skin [4]. This discrepancy arises due to the elevated
melanin levels in darker skin, causing absorption of the laser
light and consequently reducing the signal-to-noise ratio of the
measurements.
• Secondly, PPG sensors often need to be worn snugly against

the skin to ensure accurate readings. This can lead to discomfort,
skin irritation, or even pressure-related discomfort when used for
extended periods [5].
• Thirdly, the PPG sensor’s accuracy can be affected by

temperature variations and moisture levels of the skin, potentially
leading to fluctuations in readings [6].

To overcome these issues, prior works have put forth the
idea of harnessing biomagnetism as an alternative approach for
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Fig. 1. An illustration of MagWear. A built-in tiny magnet pushes the blood
flow to generate induced biomagnetic field (IBF) signals. MagWear then
leverages a GMR sensor to detect subtle changes in IBF signals to derive
the vital signs of HR, RR, and BP [9].

monitoring human vital signs [7], [8]. This approach is based on
a physiological process where the blood circulation within the
body during each heartbeat gives rise to the movement of charged
particles (ions). These ions, in turn, induce a biomagnetic field, the
strength of which corresponds to the fluctuations occurring with
each individual heartbeat.

Some recent investigations [10], [7] have demonstrated the
potential of such an approach. However, these studies face two
major challenges: i) Usability: Many prior studies utilize fixed
deployments for both users and measuring devices. This choice
stems from the exceedingly weak induced biomagnetic field,
necessitating meticulous tuning of sensing parameters to ensure
the capture of adequate vital information across different users.
The fixed deployment serves to mitigate uncertainties introduced
by factors like the distance between the user and the device.
Unfortunately, this method restricts its applicability primarily to
lab environments and degrades the user experience. ii) Reliability:
Measurements from prior studies show considerable inconsisten-
cies. The correlation between system performance and individual-
specific factors like wrist size, fat thickness, and blood vessel
dimensions is still not fully understood. Consequently, systems
may yield unreliable results when assessing a black-box modeling
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Fig. 2. The diagram of MagWear. The difference between the journal
version and the MobiCom version [9] has been highlighted.

signal without a pragmatic methodology. In light of these chal-
lenges, substantial work remains before a wearable prototype can
be developed for practical daily in-situ monitoring.

In this paper, we revisit biomagnetism and present the design,
implementation, and evaluation of MagWear, the first wearable
form factor design for inclusive and reliable vital sign monitoring.
Figure 1 shows an illustration of MagWear, where a built-in tiny
magnet pushes the blood flow to generate induced biomagnetic
field (IBF) signals. MagWear then leverages a GMR sensor to
detect subtle changes in IBF signals to derive the heart rate and
respiration rate. To deal with the human diversity, MagWear adap-
tively optimizes the external excitation magnetic field to improve
the SNR of IBF signals receptions, without human intervention.

The design of MagWear faces three practical challenges.
Absence of IBF signals modeling: To date, the theoretical and
practical limits of biomagnetism for human vital sign monitoring
are still largely unknown. More precisely, while previous research
has demonstrated the possibility of capturing slight variations in
the IBF signals through giant magnetoresistance (GMR) sensors,
the reasons behind the varying precision of measurements among
different individuals continue to elude us. The factors causing a
GMR sensor configuration to succeed in one person while proving
ineffective in another remain unclear. To this end, we thoroughly
analyze the generation process of IBF signals and subsequently
construct a comprehensive mathematical model that serves as a
theoretical foundation guiding the design of MagWear.
Addressing user-dependent IBF signals variations: Once a
comprehensive understanding is gained regarding the reasons un-
derlying the variability of measurement accuracy among different
individuals, the subsequent challenge is addressing this diversity
inherent to humans. A fixed GMR sensor configuration inevitably
leads to a deterioration in vital sign monitoring accuracy. To
mitigate the influence introduced by individual distinctions, we
propose an online adaptive algorithm that takes the IBF signal as
the feedback and automatically adjusts the sensor configurations
to improve the measurement accuracy, without explicit human
intervention.
Wearable integration and prototyping: As a wearable, Mag-
Wear should balance an intricate interplay of detection accuracy,
power consumption, and costs. We tackle this challenge by care-
fully designing both the hardware layout and signal processing
pipeline. Our design offloads most of the signal processing to
the analog domain, striking a balance between cost and power
consumption. The hardware design, on the other hand, takes into
account the impact of the magnet’s position on measurement
accuracy to optimize the overall layout. We expect the form factor
of the current prototype can be largely reduced when implemented
on a flexible PCB.

In addition to the heart rate and the respiration rate, we further

extend MagWear to achieve the blood pressure monitoring by
using the Pulse Transition Time (PTT). We introduce a set of
signal processing methods to obtain the PTT accurately and reduce
the parameter estimation errors (§5).

We conduct extensive experiments to evaluate the performance
of MagWear in various settings. The evaluation involves 30
volunteers of diverse ages and skin tones. The field studies show
that MagWear achieves consistently high performance with a mean
percentage error (MPE) at 1.55% for heart rate (HR), 1.79% for
respiration rate (RR), 3.35% for systolic blood pressure (SBP),
and 3.89% for diastolic blood pressure (DBP). The head-to-head
comparison of HR monitoring with the commodity Apple Watch 8
shows that MagWear respectively brings reductions in estimation
error, particularly in scenarios involving diverse skin tones (up to
3.8×), body hair (up to 2.6×), tattoos (up to 2.1×), and clothing
(up to 6.7×).

The contributions of this paper are summarized as follows.
• We build the first mathematical model that characterizes the

magnetic coupling effect of blood flow under the influence of
an external magnetic field. This model clarifies the variations
in measurement accuracy observed among individuals and pro-
vides valuable guidance to improve the robustness of MagWear.

• We propose a power-efficiency hardware-software solution that
can effectively handle the human diversity on biomagnetism-
based vital sign monitoring performance, including HR, RR,
and BP monitoring. The proposed solution pushes this inclu-
sive vital sign monitoring solution one big step closer to real
adoptions.

• We implement MagWear on a one-layer PCB board and follow
the IRB protocol to conduct an extensive experiment involving
30 volunteers. The results confirm the superiority and inclusive-
ness of our proposed solution in both heart rate, respiration rate,
and blood pressure monitoring when compared to the Apple
Watch 8 baseline.

Difference with the conference version. Compared with the
published MobiCom version [9] shown in Figure 2, we extend
MagWear to achieve blood pressure (BP) estimation. In section 5,
we introduce the basic idea of MagWear for BP estimation by
using the Pulse Transition Time (PTT), and then propose a deep
learning-based method to estimate systolic blood pressure (SBP)
and diastolic blood pressure (DBP). We further make an effort
to the device miniaturization. In section 6, we reimplement the
prototype of MagWear and miniaturize its form factor. In Sec-
tion 7, we evaluate MagWear’s performance in BP estimation. We
add another metric of the Bland-Altman Diagram to evaluate the
agreement between HR, RR, and BP estimated with MagWear and
the ground truth. In addition, we evaluate MagWear’s performance
under different electromagnetic interference. Finally, we discuss
the limitation of MagWear in Section 9.

2 PRELIMINARY

MagWear explores biomagnetism, particularly the induced bio-
magnetic field (IBF) signals for human vital sign monitoring. In
this section, we first present an overview of IBF signals (§2.1).
We then detail the approach used for vital sign monitoring based
on IBF signals (§2.2). Lastly, we summarize the key difficulties
in implementing IBF-based vital sign monitoring by conducting
thorough benchmarks (§2.3).
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2.1 Induced Biomagnetic Field Signals Primer

Generation of IBF signals. As an integral component of the hu-
man cardiovascular system, arteries serve as the conduits through
which oxygen-rich blood is transported from the heart to every cell
in the body. In arteries, there exists a large number of hemoglobin
(C3032H4816O812N780S8Fe4), which is a protein found in red
blood cells (RBCs) and plays a pivotal role in oxygen transport.
This functionality stems from its ability to bind oxygen to its
iron component in the Fe2+ state. Consequently, when subjected
to an external magnetic field, the iron within hemoglobin in
RBCs becomes magnetically attracted, resulting in an induced
biomagnetic field (IBF) signals as elucidated by the principles of
biomagnetism [11].
Relationship between IBF signals and vital signs. The strength
of IBF signals corresponds to the fluctuations occurring with
each individual heartbeat. The variation of IBF signals reflects
cardiovascular activities and thus can be leveraged to monitor
human vital signs. For instance, the heart continuously contracts
and relaxes, while the lungs facilitate inhalation and exhalation.
These intrinsic physiological processes influence the IBF continu-
ously, which reflects the heat rate (HR) and respiration rate (RR),
respectively. Hence, IBF signals existing within arteries contain
informative data about these vital signs, such as HR and RR.
Extraction HR and RR from IBF signals. According to the
frequency difference between HR and RR, we leverage different
filters to select HR and RR signals from the IBF signals. Consid-
ering that the heartbeat rate of humans is usually between 60 and
100 bpm, we first pass the IBF signal through a band-pass filter
of [0.6 Hz, 3 Hz] to remove the DC component and the high-
frequency noise. We then leverage Fast Fourier Transform (FFT)
to identify the periodicity which corresponds to the HR. Similarly,
since adults breathe 12 to 20 times per minute, we use a band-pass
filter of [0.2 Hz, 1 Hz] and adopt FFT to identify the RR.

2.2 Measuring IBF Signals with GMR Sensor

Although the variation of the induced biomagnetic field signal
contains a wealth of vital sign information, the strength of this
signal is extremely low (usually below 10−10 T [12]), making
it challenging to be detected. As such, prior works proposed
leveraging the giant magnetoresistance (GMR) unit, a highly
sensitive magnetic sensor, to measure IBF signal variations.
GMR Sensor. GMR refers to the phenomenon in which the
electrical resistivity of a magnetic material changes greatly when it
has an external magnetic field as compared with the absence of an
external magnetic field. There are two types of GMR units: parallel
GMR and anti-parallel GMR, which means that the resistance is
positively or negatively correlated with the strength of the external
magnetic field.
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Fig. 5. Benchmark results demonstrate the impact of (a) human diversity
and (b) placement diversity of GMR sensor on IBF signals detection [9].

A commodity GMR sensor consists of two parallel GMR units
and two anti-parallel GMR units, which form a full Wheatstone
bridge [13] to measure the subtle changes in the magnetic field. As
shown in Figure 3, two parallel GMR units of bridge arms exhibit
Rm1 = R+∆R(H), while the remaining two anti-parallel GMR
units exhibit Rm2 = R −∆R(H). The output of this full-bridge
GMR sensor is:

Vout=Vin(
Rm2

Rm1+Rm2
− Rm1

Rm1+Rm2
)=Vin(

∆R(H)

R
) (1)

where Vin is the bias voltage, R is the initial resistance of the
GMR element, and ∆R(H) is the resistance variation caused by
the external magnetic field (the induced biomagnetic field signal in
our scenario). Note from the above equation that the GMR sensor
exhibits a null output in the absence of an external magnet. Hence
it offers an intrinsic compensation for thermal drift.

2.3 Understanding IBF-based Vital Sign Monitoring
Through Benchmark Studies

Despite the existing research that explores the potential of uti-
lizing IBF signals for human vital sign monitoring, numerous
practical challenges still impede the practical implementation of
this approach. In this section, we follow prior works [10], [7],
[14], [8], [15] to develop a GMR-based IBF measurement testbed,
and conduct a comprehensive benchmark study based on 30
volunteers. The goal is to understand the efficacy and limitations
of this approach.
Experiment Setups. We use a 30 mT NdFeB disc permanent
magnet with a diameter of 10 mm as the external magnet, to
activate the blood flow and induce the IBF signals. Then we select
a general-purpose NVE AA004 [16] GMR sensor to capture the
IBF signals. The temperature compensation is achieved by the
internal Wheatstone design of the GMR sensor. We place the
permanent magnet on the radial artery of the wrist, and the GMR
sensor is placed horizontally on top of the external magnet with
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a distance of 10 mm. For the ground truth, volunteers wear an
FDA-approved Fingertip Pulse Oximeter [17] on the index finger.
Signal Processing. Considering that the heartbeat rate of humans
is usually between 60 and 100 bpm [18], we first pass the
signal output from the GMR sensor through a band-pass filter
of [0.6Hz, 3Hz] to remove the DC component and the high-
frequency noise. Figure 4(a-i) shows the measured IBF signals
from one of the 30 experiment participants. After that, a moving
average processing is applied to remove circuit noise and signal
burrs. As shown in Figure 4(a-ii), the filtered IBF signals present
clearly periodic characteristics. We then leverage Fast Fourier
Transform (FFT) to identify the periodicity which corresponds to
the heartbeat rate (HR). As shown in Figure 4(a-iii), the measured
heartbeat rate is about 1.3Hz. The respiratory rate is obtained in
a similar way. The output signals from the GMR sensor first pass
through a band-pass filter of [0.2Hz, 1Hz], since adults breathe
12 to 20 times per minute. Then we adopt FFT to identify the
respiratory rate. As shown in Figure 4(b), the measured respiratory
rate is about 0.4Hz.

We have two key observations drawn from the experimental
results shown in Figure 5.
• Observation I: The vital sign monitoring accuracy varies
significantly with different users. Figure 5(a) presents the his-
togram of the errors of heart rate (HR) across all volunteers. The
HR detection accuracy exhibits substantial variation among the 30
participants: 58% displayed commendable HR detection accuracy
with errors between 0–5%; 29% had a marginally larger detection
error, specifically in the 5% –10% range; and 13% showcased
an even more pronounced error rate of 10% –16%. Based on
the ANSI specified error criterion for cardiac monitors and HR
meters [19], an error rate of 10% (or 5 bpm) is deemed significant,
compromising the true reflection of a user’s cardiac health.
• Observation II: The placement of GMR sensor greatly
impacts the vital sign monitoring accuracy. As shown in Fig-
ure 5(b), the measured IBF signals exhibit different HR accuracy
when the GMR sensor is placed in four different ways (position
& orientation). Specifically, when the GMR sensor is positioned
horizontally above the external magnet, the heart rate detection
yields a minimal error of 1.48%. Conversely, placing the GMR
sensor vertically atop the external magnet results in a substantial
increase in heart rate detection error, reaching up to 13.8%.
Similarly, the two alternative positions were tested, revealing a
reduction in detection error to approximately 4.7% and 6.5%,
respectively.

3 THEORETICAL ANALYSIS OF IBF
In this section, we build a mathematical model to understand
IBF signal generation (§3.1). This model not only explains the

disparities observed in vital sign monitoring effectiveness across
various users but also provides valuable insights that influence the
design considerations of MagWear (§3.2).

3.1 Modeling IBF Signal Generation

We model the relationship between the external magnetic field
(EMF) signals and the induced biomagnetic field (IBF) signals,
and then quantitatively analyze various factors that affect the IBF
signals.

Inspired by the Hall effect [20], we added an external magnet
over the blood vessel to generate the IBF signals. As shown in
Figure 6(b), according to the left-hand rule, the charged particle
(like Fe2+) will feel Lorentz force F and it can be calculated by:

F = q · v ×B (2)
where q is the charge of the particle, v is the speed of the particle,
and B is the magnetic field strength felt by the particle.

Under the influence of the Lorentz force, charged particles
continuously move in the direction of the Lorentz force and
generate an electric field. As shown in Figure 6(c), when the
Lorentz force and the electric field force reach equilibrium, we
can obtain the following relationship:

q · v ×B = E · q (3)
where E is the electromotive force generated by the positive and
negative particles, and we have E = v×B. The induced current
IM generated under this electric field is:

IM =
E

R0
=

v ×B

R0
(4)

where R0 is the resistance of blood flow.
According to Ampère’s right-hand rule, the induced current

generates the IBF signals, and the strength of the IBF signals
BM is:

BM =
µ0IM × er

2πr
=

µ0v ×B × er

2πrR0
(5)

where µ0 is the magnetic permeability, er is the vertical compo-
nent of the current vector, and r represents the distance from the
induced current.

Detecting the IBF signals. In practice, we detect the variation in
IBF signals by measuring the magnetic field at a point above the
blood vessel, e.g., the reference point "G" shown in Figure 6(c) and
Figure 6(d). Now let’s assume the strength of the external magnet
is BE , the distance from the external magnet to the reference
point, from the external magnet to the blood vessel, and from the
blood vessel to the reference point is dr , dp, and dm = (dr+dp),
respectively. Then the EMF signals at the reference point "G" can
be written as Be = hBE

dr
3 . Likewise, the IBF signals generated

by the blood flow at the reference point "G" can be represented
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as Bm = µ0v×B×er

2π(dr+dp)R0
= µ0v×BE×er

2π(dr+dp)dp
3R0

. Hence the overall
magnetic field sensed by the GMR sensor at point "G" is:

Br = Be +Bm = h
BE

dr
3︸ ︷︷ ︸

EMF signals

+
µ0v ×BE × er

2π(dr + dp)dp
3R0︸ ︷︷ ︸

IBF signals

(6)

From the above equation, we have two observations.
• Firstly, the output of the GMR sensor reflects the variation of

IBF signals since the EMF signals are constant under a fixed GMR
sensor setup. This equation demonstrates the theoretical potential
of utilizing IBF signal measurements for monitoring human vital
signs.
• Secondly, this equation offers insights into the parametric

factors that influence IBF signals, including the magnetic perme-
ability µ0, speed of particles v, the distance from the external
magnet to the blood vessel dp, and the resistance of the blood flow
R0, all of which are affected by human wrist size, fat thickness,
and blood vessel dimensions. Accordingly, when applying the
same measurement setup to different users, we are expected to
get IBF signals in different SNRs. This essentially explains the
variations we observed in the heart rate monitoring performance
across different users (Figure 5).

3.2 Takeaways from the IBF Modeling

To ensure that MagWear can detect the heart rate accurately across
different users, it’s crucial to improve the SNR of IBF signals
measured at each user. According to Equation 6, one feasible
solution is to increase the intensity of the external magnetic field
BE by using a more potent external magnet. Whereas, how to find
the best external magnetic field configuration for each individual?
Blindly using a stronger magnet does not necessarily guarantee
a higher heart rate monitoring accuracy as the magnetic field
intensity may saturate the GMR sensor reading, resulting in an
inferior monitoring accuracy.

Figure 7 explains this issue. Initially, when a low-intensity ex-
ternal magnetic field is applied (Figure 7(a)), the resultant induced
biomagnetic field (IBF) signal would exhibit a low strength (as
per Equation 6). Consequently, the variation Bm1 stemming from
the heartbeat would be subtle, yielding a relatively minor GMR
sensor reading ∆V1. This scenario presents a significant hurdle
to achieving accurate heart rate monitoring. As we gradually
increase the intensity of the external magnetic field, the IBF signal
strength also grows, which results in a more pronounced GMR
sensor reading ∆V2, as shown in Figure 7(b). In this case, we
are expected to get a more accurate heart rate measurement. As
the external magnetic field intensity is elevated even more (as
depicted in Figure 7(c)), the potency of the induced IBF signal
would exceed the GMR sensor’s effective detection range, entering
a saturation region where alterations in the GMR sensor reading
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cease despite escalating IBF signal strength. Consequently, the
amplified fluctuation in the IBF signal (Bm3) caused by the heart-
beat merely corresponds to a minimal change in GMR readings
(∆V3), ultimately leading to suboptimal accuracy in monitoring
heart rate.

4 AUTOMATIC IBF SIGNAL TUNING

In this section, we present a software-hardware co-design ap-
proach that can automatically tune the IBF signal for each in-
dividual. We first describe the programmable external magnetic
field design (§4.1) that allows us to freely change the intensity of
the external magnetic field. We then present our online IBF signal
tuning algorithm (§4.2).

4.1 Programmable External Magnetic Field
We build a programmable external magnetic field (EMF) module
based on the electromagnetic induction phenomenon – when an
electric current traverses a coil, it generates an encompassing
magnetic field [21]. As shown in Figure 8(a), the programmable
EMF module is constructed by overlaying an electromagnet of
[−25 mT, 25mT] on a permanent magnet of 25mT, thus gen-
erating an external magnetic field of [0, 50mT]. The external
magnetic field is the superposition of the permanent magnet
and the electromagnet. The permanent magnet provides a basic
magnetic bias and the electromagnet is used to adjust the external
magnetic strength.

4.2 Online IBF Signal Tuning Algorithm
In MagWear, we introduce a feedback-loop algorithm designed
for tuning IBF signals. This online algorithm employs the past
IBF signal reading (provided by the GMR sensor) as a reference
to fine-tune the bias voltage of the electromagnet, aiming to
maximize the SNR of the IBF reading.

We first characterize the SNR of the IBF signal readings. In
particular, we choose Peak-Peak to Average ratio (PPA) metric
to characterize the quality of the received IBF signals. The PPA
of an IBF signal is defined as the peak-to-peak intensity within
[0.6Hz, 3Hz] frequency band, where heartbeat signal stays, over
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Algorithm 1: Online adaptive tuning algorithm
input : Vmin, Vmax ; // voltage range
Vα ; // voltage tuning step length
N ; // maximum search attempts
θ ← {4.7, 8.5, 11.2} ; // PPA thresholds
θt ← 4.7; i← 0;
output: Feasible bias voltage Vout;

1 while θt is in θ and i ≤ N do // initialization

2 Vi ← Vmin+Vmax

2 ;
3 PPAi ← CompPPA(Vi);
4 if PPAi ≤θt then // decide search direction
5 PPA+ ← CompPPA(Vi + Vα);
6 PPA− ← CompPPA(Vi − Vα);
7 if PPA+ ≥PPA− then // binary search
8 Vmin ←Vi;
9 Vi ← Vmin+Vmax

2 ;
10 return Vi;
11 else
12 Vmax ←Vi;
13 Vi ← Vmin+Vmax

2 ;
14 return Vi;
15 else
16 Update θt; // update a tighter threshold
17 i++;

the average signal intensity within this band. Extensive results
show that the error rate reduces to its minimum and becomes
stable when the PPA exceeds 2%.

Algorithm 1 outlines the IBF signal tuning process. Our
algorithm searches for the optimal bias voltage within a voltage
range. Each time we compare the current PPA value with that
corresponding to the intermediate voltage, then we reduce the
search range by half until we find the optimal bias voltage. This
process is similar to the binary search. Specifically, the function
CompPPA() is called to obtain the PPA of the received IBF
signal in the current bias voltage input settings. Let the range
[Vmin,Vmax] denote the voltage limits of the electromagnet,
which govern the boundaries for the magnetic strength value of
BE . The initial bias voltage of the electromagnet Vi is set to
(Vmin + Vmax)/2.

To expedite the search process, we leverage the monotonic
properties of the PPA metric and adjust the acceptable HR
threshold in response to user variations. Taking Figure 8(b) as a
reference, if PPAi of the received IBF signal is less than a PPA
threshold θ, the algorithm updates the bias voltage to (Vi+Vα) and
(Vi−Vα) and gets two PPA readings, namely PPA+ and PPA−,
based on these two bias voltage settings. Vα is the voltage tuning
step length and it can be dynamic. The step size decreases as the
PPA value approaches the maximum value. These two PPA values
essentially discern the slope’s direction of the PPA curve (i.e.,
point M+ and M−). After identifying the direction (by comparing
PPA+ with PPA−), the algorithm runs a binary search (lines
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Fig. 10. The schematic of blood pressure.

4−14) to narrow down the search space, expediting the searching.
The binary search is lightweight and can run on a microcontroller
efficiently. The initial PPA threshold θ is empirically set to 4.7. It
grows whenever the searched result meets the HR error limits.

5 EXTENDING TO BLOOD PRESSURE ESTIMATION

5.1 Basic Idea
Detection theory. Pulse Wave Velocity (PWV), defined as the
velocity of the arterial pulse through the cardiovascular system,
can be used as a good estimator of BP, as proven in some
references [22], [23]. Usually, PWV can be calculated as a division
of distance between pulse acquisition sites by Pulse Transition
Time (PTT). We can further leverage the following equation to
estimate the BP:

BP = P +
Q

PTT
(7)

where P and Q are two parameters.
Both the systolic blood pressure (SBP) and diastolic blood

pressure (DBP) can be estimated by the above Eq. 7 with different
parameters of P and Q. In other word, the SBP and DBP satisfy
the following relationship:

BPS = PS +
QS

PTT
(8)

BPD = PD +
QD

PTT
(9)

when given PTT, the key to SBP (BPS) calculation is to estimate
the parameters of PS and QS . Similarly, the key of DBP (BPD)
calculation is to estimate the parameters of PD and QD .
Feasibility exploration. In this paper, we leverage PTT to achieve
the BP estimation. Figure 10 shows the BP detection process and
Figure 9 shows the schematic of MagWear to obtain the heartbeat
signals. We place the MagWear devices in two different positions
along the arm. The readings of the GMR sensors in these two
positions are similar but differ in phase. The phase difference is
used to estimate the PTT. We conduct experiments to observe
the PTT variation when we change the distance between two
MagWear devices from 5cm to 12cm. The experiment setting
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is shown in Figure 12. As shown in Figure 11, we find that
the average PTT at the distances of 5cm, 10cm, and 12cm are
0.050s, 0.149s, and 0.206s, respectively. The larger the distance
between MagWear devices, the larger the PTT, but the higher the
deployment cost. Taking into account both PTT and deployment
cost, we choose the MagWear devices distance as 10cm. The above
experiments demonstrate the feasibility of BP estimation by using
the PTT.

5.2 Blood Pressure Estimation

In this subsection, We introduce the specific BP estimation
method, including the calculation of PTT, estimation of P and
Q, and estimation of BP.

5.2.1 Calculation of PTT
During the process of calculating PTT from the GMR sensor
readings, there are several challenges. First, the heart rate signal
exhibits different waveforms due to varying states of the heart,
such as R-waves, P-waves, and T-waves, all resembling peak
points. While the time interval between two R-waves is typically
measured in PTT, other wave signals may produce false positive
peaks, impacting the accuracy of PTT calculation. Second, dis-
crepancies in time offset or relative movement between two GMR
sensor readings could result in unmatched peak points. These

inaccuracies in PTT calculation can affect BP estimation. In this
way, we propose a specific PTT calculation method to eliminate
these errors.

Sampling and normalization. We set the sliding window size to
10s and the sampling rate to 100Hz to obtain enough raw data.
Then, the data is normalized to avoid inconsistencies in the signal
strengths of the two GMR sensors.

Low-pass filtering. After sampling the GMR sensor output sig-
nals, there are still small spurious signals, and these signals
produce many false positive points when detected by the local
maximum peak. To make the waveform as smooth as possible,
a further digital low-pass filter is applied to the waveform. To
maximize the suppression of clutter signals in the heart rate fre-
quency range, we chose a low-pass filter with a cut-off frequency
of 0.7Hz.

Peak detection with a threshold. First, we obtain all peak points
by local maximum detection. Then, considering that the peak
value of the R-wave is much larger than the peaks of the other
waves, we remove the false positive peaks generated by other
waves by averaging the threshold detection. Through experimental
analysis, the threshold was generally chosen to be 0.7× of the
average threshold.

Peak matching between two sequences. In the experiment, there
are instances where certain peak locations of the two signals do
not align perfectly. This discrepancy is caused by the temporal
offset between two GMR sequences or errors caused by the
relative movement. To address this issue, we employ a dynamic
programming (DP) algorithm to achieve sequence matching.

Our key observation is that the timing error resulting from
signal offset or relative movement error between the two sensors is
more higher than that of the PTT by a factor of ten. Therefore, we
can group the peak points to minimize the overall time difference
in the matching process. To be specific, for the first and second
output signals of GMR sensors, the time of the peak point can be
denoted as seq1 = {a1, a2, ..., am} and seq2 = {b1, b2, ..., bn},
respectively. n is not equal to the m. We define the Euclidean
distance as

d(ai, bj) =
√
(ai − bi)2 (10)

Our optimization objective is to minimize the sum of the
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Fig. 13. The result of peak matching.

Euclidean distances of all peak pairs:

min
ik,jk

min(m,n)∑
k=1

d (aik , bjk) (11)

where ik and jk represent the indexes of the elements in the seq1
and seq2 in the k-th set of matched pairs, respectively, and ik and
jk are unique.

The DP algorithm for sequence matching is as follows. First,
we define Cij as the cost matrix and Dij as the cumulative cost
matrix. Cij represents the cost of aligning the i-th element of
seq1 with the j-th element of seq2. Dij represents the minimum
cumulative cost to align the prefix of seq1 ending at position i
with the prefix of seq2 ending at position j. The state transfer
equation can be represented as

Dij = Cij +min(Di−1,j , Di,j−1, Di−1,j−1) (12)

Finally, the best grouping is obtained based on the cumulative cost
matrix, as shown in Figure 13.
PTT Averaging. Within a sliding window, the sequence-matching
algorithm is able to obtain multiple sets of well-matched peak
points. One PTT can be obtained for each set of peak peaks.
therefore we use the mean PPT to characterize the overall PTT
of this window.

5.2.2 Estimation of P and Q

We leverage a learning-based approach[24] to estimate the param-
eters of P and Q.
Network architecture. We utilize two GMR sensor output signals
as inputs. Before entering the network, these signals undergo
pre-processing operations including normalization and filtering.
To extract deeper features, we employ two parallel branches
for temporal and spectral feature extraction following reshaping
operations. The network structure is shown in Figure 14. The first
branch focuses on time series feature extraction. It comprises four
consecutive residual blocks, each containing three convolutional
layers. Each convolutional layer is followed by a batch normal-
ization (BN) layer for normalization and an activation layer to
expedite model convergence. Additionally, residual connections
are utilized to accelerate model convergence. The second branch
is dedicated to spectral feature extraction. This module generates
spectrograms via short-time Fourier transform (STFT) and em-
ploys a GRU unit to capture time-dependent information from
the spectrogram. Subsequently, the feature information obtained
from the first branch is aggregated, and further fine-grained time-
dependent features are extracted by the GRU unit. Similarly, the
feature information from the second branch is concatenated to
extract spectral-related features. Finally, after concatenating all
fine-grained features, two parameters, P and Q, are predicted using
a dense layer.
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Loss function. The method we employ is a fully supervised
learning approach. During training, the network outputs estimated
values for P and Q. Subsequently, a BP value is computed using
Equation 7. We then utilize the minimum mean square error as a
loss function to quantify the disparity between the estimated BP
and the actual BP.

Loss =
1

n

n∑
i=1

(BPi − B̂Pi)
2 (13)

where n denotes the number of batch size, BP and B̂P denotes the
ground truth and estimated BP, respectively. The learning rate of
the training model is 1e-4, the batch size is 256 and the maximum
number of training rounds is 50.

6 IMPLEMENTATION

We prototype MagWear on a two-layer printed circuit board (PCB)
using COTS analog components and an ultra-low power ESP32
MCU [25]. Figure 9 and Figure 15 show the hardware schematic
and the hardware prototype. MagWear consists of three parts: (1)
external magnet, (2) analog front-end, and (3) digital back-end.
The prototype costs approximately $15.3 USD.
• External magnet. The external magnet is built by overlaying an
electromagnet of [−25mT, 25mT], a pure copper coil with 400
turns, on a permanent magnet of 25mT. The size of the external
magnet is 19mm× 12mm.
• Analog front-end. We adopt NVE AA004 [16] GMR sensor to
detect IBF signals. The output of the GMR sensor is connected
to a low-power amplifier composed of INA126 [26] with an
amplification gain of 800. With this setting, the variation of the
IBF can be captured and amplified. The output signal from the
amplifier is further sent to the filtering processing circuit. There
are four different low-pass filters composed by OP07 [27] from
Texas Instruments, and their cutoff frequencies are 0.2Hz, 0.6Hz,
1Hz, and 3Hz. By cascading these low-pass filters, two different
bandpass filters [0.6Hz, 3Hz] and [0.2Hz, 1Hz] can be formed
to filter out the desired heartbeat signals and respiratory signals,
respectively. Then the filtered analog signals are shifted to 0-5V
by a voltage converter1 and are forwarded to the digital back-end.
There are two switches, where "S1" enables MagWear to enter
working mode and "S2" is used to select the suitable filter. When
measuring the blood pressure, we place the MagWear front-ends
at two different positions (Wrist and elbow) and then select the
frequency of the filter as [0.6Hz, 3Hz]. Finally, we calculate the

1 ADC can only sample positive voltage signals.
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time difference based on the phase difference of the IBF signals
obtained from two MagWear front-end.
• Digital back-end. We adopt a 12-bit ADC with a sampling
rate of 100 Hz to digitalize these analog signals and send these
data to the ESP32 [25] MCU. The MCU is responsible for (a)
magnet adjustment: dynamically controlling the bias voltage of the
electromagnet via a driver OPA549 [28]; (b) vital sign monitoring:
measuring HR, RR, and BP after signal processing.
• Placement of the GMR Sensor. We carefully understand the
impact of GMR sensor’s placement (position & orientation) on
the detection result of MagWear, as elaborated in Figure 16: (1)
Top & horizontal : Both the EMF signals and the IBF signals only
have the horizontal component. Thus the output voltage of the
GMR sensor has a good SNR and exhibits clearly distinguishable
signal features. (2) Top & vertical: There is almost no signal
component of IBF in the vertical direction. (3/4) Side & horizontal
and side & vertical: Both the EMF signals and the IBF signals have
horizontal and vertical components. However, the decomposition
of IBF signals in two directions will affect the response sensitivity
of the GMR sensor. The experimental result in Figure 5(b) is
consistent with our above analysis. Hence, we place the GMR
sensor horizontally on the top of the external magnet to maximize
its detection sensitivity.
•Magnet safety. Ensuring user safety in the presence of magnetic
fields is paramount. The Magnet Safety Guideline from ACGIH
dictates that a magnetic field strength of up to 60mT is deemed
safe for whole-body exposure, while the extremities can tolerate
up to 600mT [29], [30]. Our measurements show that the most
potent magnet in MagWear generates a magnetic field strength of
less than 50mT at a distance of 1cm. This is safe for everyday
use and notably falls well under the advised safety limits. Certain
individuals, especially those with cardiac implants, should exercise
extra caution. Their safe exposure limit is much lower, capped at
0.5mT. We strongly advise such individuals to seek counsel from
their healthcare providers before using the device [31].
• Device miniaturization. MagWear has miniaturized its form
factor shown in Figure 17: 1) We integrate the analog front-end
and the digital back-end on one PCB board to minimize the form
factor as 38mm×45mm; (2) We adopt a flexible PCB design to
compact the circuitry.

Analog front-end 
& digital back-

end

Flexible PCB

Display Screen38mm

45mm

Fig. 17. MagWear miniaturization.

7 EVALUATION

7.1 Experiments Setup

Data collection and demographic information of the dataset.
We recruit a total of 30 volunteers and the participant distribution
is as follows. (1) The gender distribution is 20 males and 10
females, respectively. (2) 30 participants were divided into four
groups based on age distribution. There are 8, 8, 7, and 7 volun-
teers respectively in the age group 20-30, 30-40, 40-50, and 50-60.
(3) Based on the Body Mass Index (BMI), 30 participants were
divided into four groups based on age distribution. There are 5, 10,
10, and 5 volunteers respectively in the age group 20-30, 30-40,
40-50, 50-60. We divide 30 participants into four groups, namely,
underweight (BMI≤18.4), healthy (18.5≤BMI≤24.9), overweight
(25.0≤BMI≤29.9), and obese (BMI≥30.0). (4) Each volunteer is
asked to self-identify their skin tone. 13 out of 30 participants
chose a skin tone rating of 1-3, 12 participants opted for 4-6,
and 5 participants selected 7-10 on the scale. In addition, our
IRB doesn’t mandate specific quotas for recruiting participants
and our recruitment process is open to all volunteers. Although
we haven’t covered the balanced representation of the sample, we
hold confidence that our findings will generalize to a more diverse
and expansive population. As shown in Figure 15, the volunteers
wear MagWear in a way they feel comfortable. The ground truth is
obtained by an FDA-approved device, LEPU PO6 Fingertip Pulse
Oximeter [17]. Our testing protocol involves each user undergoing
5-minute assessments repeated 10 times.
Evaluation metrics. We adopt the following metrics to evaluate
the performance of MagWear.
(i) Mean Absolute Error (MAE) is the mean absolute difference
between the estimated value (denoted by V E) and the ground
truth (denoted by V T ) i.e., MAE = 1

N

∑N
i=1 |V

E
i − V T

i |.
(ii) Mean Percentage Error (MPE) is the mean percentage differ-
ence between V E and V A, i.e., MPE = 1

N

∑N
i=1

|V E
i −V T

i |
V T

i
.

(iii) Bland-Altman Diagram analyzes the agreement between two
measurement methods. It evaluates a bias between the mean
differences and estimates an agreement interval.
Exclusion and inclusion factor. The exclusion and inclusion
factor is the impact of skin tone. PPG measurements can some-
times be affected by variations in skin tone, as they rely on light
absorption and reflection. IBF signals are less sensitive to these
variations, potentially making them more reliable across a wider
range of individuals. Given classical PPG’s sensitivity to skin tone,
our primary goal is to understand the inclusiveness of MagWear
to the specific study population.
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Fig. 20. Overall performance of SBP and DBP.
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Fig. 21. The correlation analysis of SBP and DBP.

7.2 Field Study

HR monitoring result. We first examined the HR monitoring
accuracy among 30 volunteers. The results are summarized in
Figure 18. Overall, MagWear achieves decent performance across
all 30 participants, with a mean MPE at 1.55% for HR. We find
that subjects 9, 17, and 26 have relatively higher MPE (>2%)
than the remaining subjects. This could likely be attributed to
the fact that these individuals tend to have higher body weights.
Additionally, external magnetic fields might not readily stimulate
and attenuate following encounters with bodily factors. We further
leverage the Bland-Altman diagram to evaluate the agreement
between the HR measured with MagWear and the ground truth,
as shown in Figure 19(a). The mean and standard deviation of
HR are 1.10% and 1.53%. It is clear that the bias between the
two methods is limited with very low mean and narrow limits of
agreement (red lines). Notably, the majority of the data points fall
within the limits of agreement, denoting the two methods are in
agreement.
RR monitoring result. We then examined the RR monitoring
accuracy among 30 volunteers. Figure 18 shows the performance
of MagWear. We observe a mean MPE at 1.79% for RR across
all 30 participants. Figure 19(b) shows the Bland-Altman diagram
to evaluate the agreement of RR measured with MagWear and the
ground truth. The mean and standard deviation of RR are 1.13%
and 1.62%.
BP monitoring result. We first examined the HR, RR, and

BP monitoring accuracy, including the SBP and the DBP. The
results are shown in Figure 20. Overall, MagWear achieves decent
performance across all 30 participants, with a mean MPE at 3.35%
for SBP and 3.89% for DBP, respectively. We find that subject 9
has a relatively higher MPE (>5%) than the remaining subjects.
The reason behind this may be due to the fact that this individual
tends to have a higher body weight. We further leverage the Bland-
Altman diagram to evaluate the agreement between the SBP and
DBP measured with MagWear and the ground truth, as shown
in Figure 19(c) and Figure 19(d). Consequently, the mean and
standard deviation of SBP are 1.24% and 3.89%, the mean and
standard deviation of DBP are 1.33% and 2.47%. The result
demonstrates that our method of MagWear and the ground truth
of Omron Sphygmometer are in agreement.
Correlation analysis. We conduct correlation analysis for the
blood pressure estimation across 30 volunteers. The result is
shown in Figure 21. We observe the correlation coefficient of SBP
and DBP is 0.874 and 0.836, respectively. The correlation analysis
proves a good linear fit for blood pressure estimation.

7.3 Benchmark Study

Impact of age. We examine the impact of the user’s age to
verify MagWear’s robustness. 30 volunteers of different ages
wear MagWear and iWatch to detect HR. The result is shown
in Figure 22(a). We have the following observation. MagWear and
iWatch present similar MAE errors. The MAE of MagWear and
iWatch vary from 1.24 bpm to 1.44 bpm and from 1.12 bpm to
1.31 bpm, respectively. In addition, the age group spanning 50-60
years exhibits a relatively higher MAE.
Impact of BMIs. We then compare the impact of different
BMIs on MagWear ’s and iWatch performance. We divide 30
participants into four groups, namely, underweight (BMI≤18.4),
healthy (18.5≤BMI≤24.9), overweight (25.0≤BMI≤29.9), and
obese (BMI≥30.0). As shown in Figure 22(b), iWatch achieves
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MAE of 1.22 bpm, 1.20 bpm, 1.31 bpm, 1.44 bpm for four groups,
and MagWear achieves MAE of 1.35 bpm, 1.25 bpm, 1.38 bpm,
1.52 bpm. We find that the MPE of MagWear and iWatch is
relatively higher for obese subjects.
Impact of skin conditions. Given classical PPG’s sensitivity to
skin tone, our primary goal is to understand the inclusiveness
of MagWear to the specific study population. The participant
distribution is as follows: 13 out of 30 participants chose a skin
tone rating of 1-3, 12 participants opted for 4-6, and 5 participants
selected 7-10 on the scale. Although we haven’t covered the entire
Monk scale, we hold confidence that our findings will generalize
to a more diverse population. The outcomes are presented in
Figure 23(a). Notably, MagWear consistently achieves low MAEs
ranging from 1.21% to 1.48% across all three skin tone groups,
underscoring its inclusiveness across different skin tones.
Impact of body hair. Next, we evaluate the impact of body
hair (Figure 23(b)). As the thickness of body hair increases, the
MAE of iWatch grows by 4.4× from 0.85% to 3.74%, while the
MAE of MagWear is relatively stable at 1.27%–1.42%. This is
expected since compared to magnetic signals, optical signals are
more susceptible to the occlusion of the body hair.
Impact of tattoo. Tattoos affect the propagation of optical signals.
As shown in Figure 23(c), the MAE of iWatch with tattoo grows
up to 2.73%, 2.04× higher than that of MagWear.
Impact of clothing. We then evaluate the impact of clothing to
verify the non-contact characteristic of MagWear. Volunteers wear
different clothes and then wear MagWear and iWatch on their
wrists. The result is shown in Figure 23(d). As the thickness of
the clothes increases, the MAE of MagWear grows by 1.1× from
1.10 bpm to 1.22 bpm, the MAE of iWatch grows by 9.56× from
0.86 bpm to 8.23 bpm. Note that the magnetic flux can penetrate
through the clothing, the detection result of MagWear is more
reliable and sensitive than that of iWatch. In contrast, clothing
obstructs the optical path between the PPG sensor and blood flow,
causing the HR measurements obtained by the iWatch through
clothing to effectively represent blind estimations. Remarkably,
we have found that the iWatch can still yield results when placed
against objects, such as a cup.
Impact of humidity. We conduct tests when volunteers have
different degrees of humidity on their arms. The evaluation result
is shown in Figure 22(c). We find that MagWear is more resilient
to humidity than iWatch. When varying from dry to sweaty, the
MAE of MagWear varies from 1.06 bpm to 1.22 bpm, while
the MAE of iWatch grows by 3.14× from 0.91 bpm to 2.86
bpm. This is because the presence of moisture affects the optical

path significantly more than the magnetic path. Consequently, it’s
noteworthy that Apple cautions that water could impede heart-rate
measurements when swimming.
Impact of wearing position. We conduct experiments to examine
the impact of wearing position on the human body to verify
MagWear’s robustness. The volunteers wear MagWear and iWatch
at different positions on the arm to detect HR. The various
wearing positions and their corresponding outcomes are illustrated
in Figure 22(d). We have the following two observations. First, the
MAE varies with the wearing position. The MAE differences of
MagWear and iWatch wearing at the best position ("A") and the
worst position ("E") are 0.24 bpm and 1.61 bpm, respectively.
Second, wearing position has less impact on MagWear than
iWatch. For example, the MAE of MagWear is 2.14× less than that
of iWatch at position "E", which is probably due to their different
detection principles. iWatch adopts a PPG-based detection method
and the bone at the position will affect most of the optical path,
resulting in serious errors. MagWear adopts GMR-based detection
method and the induced magnetic field can effectively penetrate
bones, thus maintaining a lower MAE.
One-hour continuous study. We invite a participant with a
darker skin tone to wear MagWear for an hour in daily activities,
comprising periods of napping, sitting, and standing. The result is
shown in Figure 24(a). We can find that the MAE of MagWear
is more stable than that of iWatch, which means that MagWear
exhibits relatively stable characteristics in long-term measure-
ments. Furthermore, during the transition phases between different
activities, both MagWear and the iWatch experience brief upticks
in MAE. This can be attributed to the readjustment required as the
subject transitions between distinct physiological states.
Impact of electromagnetic interference. The result is shown in
Figure 24(b–d). (1) We measure the HR in the open playground
and the fifth-floor laboratory to observe the impact of the earth
magnetic field variation. We observe that the performance of
MagWear on different locations is similar. This is expected since
that the earth magnetic field declines exponentially with distance.
In this way, the subtle earth magnetic field variation will not
cause a significant change in the GMR sensor readings. (2) We
conduct experiments to evaluate the impact of electromagnetic
interference on MagWear. We place the MagWear next to a smart-
phone, WiFi AP, electric fan, and microwave oven. We have the
following observations. Firstly, MagWear’s MAE in the presence
of interference is more compromised around the microwave oven
than around the smartphone, WiFi AP, and electric fan. The
MAE values for MagWear are measured at 14.1 bpm, 7.6 bpm,
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4.3 bpm, and 3.1 bpm when positioned at a distance of 1 cm
from the microwave oven (magnetron), WiFi AP, smartphone, and
electric fan. Secondly, the MAE decreases as the distance from the
interference source increases. As the separation grows to 20 cm,
the MAE values around the microwave oven (magnetron), WiFi
AP, smartphone, and electric fan are lower than 2 bpm.
Impact of device placement. The placement of device (position &
orientation) can affect the performance of MagWear. The result is
shown in Figure 25(a). The measured MAEs are different when
the GMR sensor is placed in four different ways (position &
orientation). When the GMR sensor is positioned horizontally
above the external magnet, the heart rate detection yields a MAE
of 1.8 bpm. Hence, we place the GMR sensor horizontally on the
top of the external magnet to maximize its detection sensitivity.
Impact of human motion. We conduct experiments to evaluate
MagWear’s performance under human mobility. We invite a par-
ticipant to wear MagWear and perform four different activities
(jogging, walking, waving, writing) when measuring heart rate
(HR) and mean blood pressure (mBP). The experimental result is
shown in Figure 25(b). The MAE of HR measurement is 14.2 bpm,
12.7 bpm, 13.4 bpm, 10.5 bpm. The MAE for mBP estimation is
18.6 mmHg, 15.7 mmHg, 13.2 mmHg, and 12.5 mmHg across
these four activities. The MAE of MagWear in mobility is larger
than that in stationary.
Impact of exercise. We invite a participant to wear MagWear for
an hour of detection after running. The heart rate (HR) result is
illustrated in Figure 25(c). We observe the HR’s MAE is 5.2 bpm
when detected at the 10s. The HR’s MAE declines with time since
that the participant’s heartbeat gradually stabilizes after exercise.
Finally, the RR’s MAE drops to 1.6 bpm after 30min.
Impact of volunteer with high and low blood pressure.
Following the IRB regulation, we recruit fifteen volunteers (five
with normal BP, five with high BP, and five with low BP) to
examine MagWear’s performance on them. The result is shown
in Figure 25(d). Three groups achieve SBP’s MAE of 4.5 mmHg,
3.9 mmHg, 3.2 mmHg and DBP’s MAE of 4.1 mmHg, 3.6 mmHg,
3.1 mmHg. We find that the MAE of MagWear is relatively stable
for these subjects.

8 RELATED WORK

Physiological sensing with wearables. Existing mainstream
wearable devices predominantly employ photoplethysmography

(PPG) [32], electrocardiogram (ECG) [33], and inertial mea-
surement unit (IMU) [34] sensors for vital sign monitoring. For
instance, devices like Apple Watch, Garmin Watch, and Fitbit
leverage PPG sensors to facilitate heartbeat and respiratory detec-
tion. Although the PPG has been well explored and validated for
everyday usage, it is not without flaws. Notably, PPG sensors have
shown sensitivity towards various skin tones, producing biased
readings, especially for darker skins [4]. Departing from optical
methods, ECG sensors are popular in clinical settings for their
robust performance across a diverse range of patients (e.g., skin
tones). However, their broader adoption in everyday wearables
is limited because they necessitate direct skin contact through
electrodes, often attached to the chest. This requirement can be
inconvenient for continuous, long-term monitoring. Researchers
also explore IMU sensors for physiological sensing. For example,
BioWatch [35] employed an IMU sensor within its design to infer
physiological signals from pulse-induced vibrations. Extending
this concept, [36] examined a chest-mounted IMU to gauge both
HR and RR in stationary scenarios. Furthermore, [37] combined
PPG and IMU sensors in a smart ring that tracks user activities
and estimates HR. However, the IMU’s performance can be
compromised by skin contact and it may suffer from cumulative
drift during long-term monitoring.

Different from the aforementioned works, MagWear delves
into an alternative sensing method: biomagnetism. This approach
seeks to provide inclusive and long-term physiological monitoring.
Preliminary findings with MagWear have demonstrated reliable
HR and RR readings across 30 subjects, accounting for variations
in skin tones, body hair density, tattoos, clothing fabrics, place-
ment, and moisture conditions.

GMR for vital sign monitoring. The realm of vital sign mon-
itoring has witnessed a burgeoning interest in the potential of
biomagnetism [14], [8], [15], [10], [7], [38], [39]. Pioneering
studies [8], [10] have validated the capability of GMR sensors in
detecting heartbeats when positioned on the wrist in a controlled
lab environment. Furthermore, [10] has affirmed the reliability
of GMR sensors for RR monitoring by benchmarking their
outputs against ECG and PPG data. Concurrently, research in
[15] unveiled a groundbreaking non-contact technique for Pulse
Wave Velocity (PWV) estimation using GMR sensors, marking a
promising avenue for future cardiovascular diagnostics. However,
the theoretical capacities and practical boundaries of biomag-
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netism in human vital sign monitoring remain largely unexplored.
Comprehensive understanding and modeling of IBF signals are
conspicuously lacking. The challenge of reliably capturing IBF
signals amidst human variations remains a significant hurdle.

In contrast to these earlier explorations, MagWear delves deep
into the theoretical foundations of IBF signal generation, intro-
duces an adaptive IBF tuning algorithm tailored for diverse human
variations, and crafts a wristband designed for daily use. This
propels the inclusive vital sign monitoring solution significantly
closer to real-world adoption.

9 DISCUSSION

Integrating to existing wearable devices. Our method of estimat-
ing blood pressure based on PPT usually requires two channels
and these two channels need to be far apart, which is currently
a common limitation of this method. Indeed, we admit that it is
difficult to directly integrate MagWear BP estimation into existing
watches, even though existing watches also hardly support BP
estimation. However, we can prototype MagWear as a plug-and-
play module that can be used as an accessory or supplement to
watches or other wearable devices when BP estimation is needed,
thus providing a BP monitoring service. In addition, compared to
traditional bandage BP monitors, MagWear is more comfortable
to wear. It does not require inflating the arm to create a squeez-
ing sensation, nor does it necessitate frequent user intervention,
resulting in a superior user experience.
Applicability to different populations. MagWear provides a
general method for vital sign monitoring based on the biomag-
netism variation, which is applicable to different populations. Our
evaluation also proves that the MAE of MagWear is relatively
stable for different subjects. However, from a safety perspective,
we suggest that individuals with lower or higher vital signs can use
professional medical equipment to enhance vital sign monitoring.
Prone to the human motion. The human motion can affect
MagWear’s vital sign detection results since the human motion can
result in the relative position variation between the GMR sensor
and the blood vessel, causing fluctuations in the biomagnetic
field detected by the GMR sensor. MagWear is more suitable for
continuous vital signs monitoring under the stationary state.
Impact of electromagnetic interference. The electromagnetic
interference may affect the MagWear’s performance. It is worth
noting that the magnetic field strength declines exponentially with
the distance. Hence, the influence of electromagnetic interference
on MagWear remains constrained, and we can implement a shield-
ing layer to further safeguard the system’s external magnets.
The completeness of the dataset. We recruit a total of 30 vol-
unteers including different genders, ages, BMI distributions, and
skin tones to collect data following the IRB regulation. Our IRB
doesn’t mandate specific quotas for recruiting participants and our
recruitment process is open to all volunteers. Although the number
of volunteers with genders, ages, BMI distributions, and skin tones
is not evenly distributed, we hold confidence that our findings
will generalize to a more diverse and expansive population. In the
future, one may recruit more volunteers, leveraging a larger dataset
to make the participant distribution with different skin colors more
uniform, to make this technique applied better in practice.

10 CONCLUSION

We present MagWear, the first vital sign monitoring system that
practically exploits biomagnetism to achieve heart rate, respiration

rate, and blood pressure monitoring. We implement MagWear
on COTS low-cost analog components and conduct extensive
experiments to evaluate its performance. MagWear explores bio-
magnetism to achieve heart rate and respiration rate monitoring.
Besides, other vital signs are also promising to be detected through
the variation of the IBF signal. In essence, the IBF signal is
affected by the concentration of charged particles, such as iron and
oxygen in the blood vessels. For example, insufficient hemoglobin
or ions may lead to the symptoms of anemia and the blood oxygen
index can be influenced by the change of oxygen concentration.
Hence, we can further explore IBF signal variation to detect
anemia and blood oxygen saturation, which is also our ongoing
work. We believe that MagWear paves the way for the practical
integration of biomagnetism-based vital monitoring systems.
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