
ABSTRACT
WiFi-based device localization is a key enabling technology for
smart applications, which has attracted numerous research studies
in the past decade. Most of the existing approaches rely on Line-
of-Sight (LoS) signals to work, while a critical problem is often
neglected: In the real-world indoor environments, WiFi signals are
everywhere, but very few of them are usable for accurate localiza-
tion. As a result, the localization accuracy in practice is far from
being satisfactory. This paper presents Bifrost, a novel hardware-
software co-design for accurate indoor localization. The core idea
of Bifrost is to reinvent WiFi signals, so as to provide sufficient
LoS signals for localization. This is realized by exploiting the dis-
persion effect of signals emitted by the leaky wave antenna (LWA).
We present a low-cost plug-in design of LWA that can generate
orthogonal polarized signals: On one hand, LWA disperses signals
of different frequencies to different angles, thus providing Angle-
of-Arrival (AoA) information for the localized target. On the other
hand, the target further leverages the antenna polarization mis-
match to distinguish AoAs from different LWAs. In the software
layer, fine-grained information in Channel State Information (CSI) is
exploited to cope with multipath and noise. We implement Bifrost
and evaluate its performance under various settings. The results
show that the median localization error of Bifrost is 0.81m, which
is 52.35% less than that of SpotFi, a state-of-the-art approach. SpotFi,
when combined with Bifrost to work in the realistic settings, can
reduce the localization error by 33.54%.
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1  INTRODUCTION
Location  information  [32,  63,  79,  80]  is  crucial,  especially  for  smart  
indoor  applications  [50,  60,  67,  72],  such  as  smart  home  [54,  62],
indoor  navigation  [7,  18,  19,  59]  and  so  on.  Due  to  the  ubiquitous  
deployment  of  WiFi  access  points  (APs)  and  wide  availability  of  
WiFi  modules  on  the  devices,  WiFi-based  localization  [16,  25,  49,  56,
57,  61,  64,  65,  68–70,  73,  74,  82]  appears  to  be  promising  for  indoor  
localization.  The  existing  works  of  WiFi-based  indoor  localization  
can  be  broadly  grouped  into  two  categories,  data-driven  methods  
and  model-driven  methods.

  Data-driven  methods  are  typically  represented  by  fingerprint  [14,
44,  61].  These  methods  need  to  collect  Received  Signal  Strength
(RSS)  or  CSI  at  different  places  to  construct  a  database  mapping  RSS
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Figure 2: The number of LoS APs in each room in a library and an
office building.

(or CSI) with locations, which is a labor-intensive process. Also,
their performance may be vulnerable to dynamic environments.

Model-driven methods induce less labor cost and attract more
research studies. Generally, a model-driven method calculates the
location by estimating signals’ Angle-of-Arrival (AoA) [2, 23, 24,
69], Time-of-Flight (ToF) [70, 81] or both [9, 16, 43]. Most of the
existing approaches rely on Line-of-Sight (LoS) signals to work, as
Fig. 1(a) illustrates, while a critical problem is often neglected: In
the real-world indoor environments, WiFi signals are everywhere,
but very few of them are usable for accurate localization. As an
example to validate this finding, Fig. 2 plots the statistics of the
real deployment of WiFi APs in a library (48 rooms) and an office
building (54 rooms). The data shows that in nearly half of all the
rooms, there is not even one LoS AP available. The rooms with
sufficient LoS signals account for less than 5% of all the rooms. In
other words, the chance for a WiFi device to receive sufficient LoS
WiFi AP signals, namely the case for it to be accurately localized
by using an existing approach, is less than 5%. That well explains
why the practical performance of using the existing localization
approaches is far from being satisfactory.

A straightforward idea to address the above problem is to in-
crease the number of deployed WiFi APs, until everywhere is cov-
ered by at least 3 LoS APs. It isn’t practical, however. Taking the
library and office building investigated in Fig. 2 as an example, typ-
ically there are 50 rooms in a building. Covering every room with 3
APs requires 150 APs to be deployed, which means multiple draw-
backs, such as substantial deployment cost of cables (connecting the
APs), overly crowded wireless spectrum, and frequent interference
and collisions in the wireless communication.

This paper presents a novel approach called Bifrost1, a plug-
and-play and cost-effective scheme to significantly enhance the
availability of LoS WiFi signals and in turn the localization accuracy.
In light of the research progress on leaky wave antenna (LWA) in
recent years [21, 22, 42, 47, 48, 76], Bifrost exploits dispersion
effect of wireless signals [33]. Deployed in the space covered by
WiFi signals, a LWA can receive those signals and then radiate them
at different frequencies towards different directions, exhibiting
frequency and spatial division multiplexing (FSDM) features, as is
reinventing2 WiFi signals.

1In Norse mythology, Bifrost is a rainbow bridge that reaches between Midgard
(Earth) and Asgard (the realm of gods).
2The word “reinventing” means that Bifrost makes WiFi signals look different from
their original form by using the LWAs. The signal emitted by the LWAs has two new
properties, dispersion effect and circular polarization.

Figure 3: The high-level principle of Bifrost.

Fig. 3 illustrates the high-level principle of Bifrost. To localize
a target device, Bifrost uses two LWAs to transform WiFi signals
into FSDM signals, so the target device will receive two LoS FSDM
signals with a unique pair of frequencies. Since the frequency and
the propagation direction of FSDM signals are coupled, the target
device can estimate its AoAs to both LWAs by analyzing the received
spectrum and then calculate its location.

Compared with using WiFi APs, using LWA to assist localization
offers the following two distinct advantages:
1) Cost-effective. The cost of a LWA in Bifrost is 7.41 USD (4.36

USD for the material cost and 3.05 USD for the control module),
which is significantly lower than that of a WiFi AP (typically
30 ∼ 100 USD [3–6]).

2) Easy to Use. Deploying a LWA is very convenient. It can operate
in a plug-and-play manner without the need for connecting
power cables.

Leveraging these two advantages, Bifrost can be easily imple-
mented in any environment with WiFi coverage, no matter whether
the WiFi signals are LoS or not. Bifrost can either work inde-
pendently, or cooperatively with other conventional WiFi-based
localization methods.

The design of Bifrost tackles several critical challenges, which
are summarized as follows:
Ambiguity between Different LWAs. As Fig. 3 shows, a target
device may receive signals from two LWAs, which are reinvented
from the same WiFi signal source. Without a special design, it is
almost impossible for the target to distinguish one LWA from the
other. To overcome this problem, the LWAs in Bifrost are designed
to generate orthogonal circular polarized (CP) signals, so that they
won’t mix up with each other (§3.1). Polarization of LWA signals
can be conveniently switched by altering the input port of WiFi
signals, without the need for reconstruction or modifications to the
LWA’s structure.
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(a) Linear polarization (LP). (b) Circular polarization (CP). (c) Elliptical polarization (EP). (d) CP signal synthesis.

Figure 4: The properties of polarized electromagnetic waves.

Signal Extraction from the Interfered Frequency Band. Since
FSDM signals radiated by LWAs are transformed from existing WiFi
signals, the two types of signals operate within the same frequency
band and can be simultaneously received by a target device. Directly
using such signals leads to erroneous AoA estimation. To deal with
such interference, LWAs in Bifrost work in a duty-cycled manner.
The target device is able to detect distinctive variation of the signal
amplitude at the frequencies of FSDM signals (§3.3). By analyzing
WiFi CSI, the target device can effectively extract the desired FSDM
signals from the interfered frequency band.
Indoor Multipath Effect. The multipath effect in the indoor en-
vironment may seriously affect the quality of the received FSDM
signals and further affect the localization accuracy. In order to
identify FSDM signals propagating along the LoS path, Bifrost
operates in two steps. First, we map frequencies of FSDM signals
with subcarriers in CSI and cluster adjacent subcarriers to only re-
tain the cluster with the highest energy (§3.4). Second, we take the
intersection of two clusters (corresponding to the two orthogonal
CP signals), and determine the final frequency by weighting the
center frequency of the remaining clustered subcarriers (§3.5).

Our contributions can be summarized as follows:
1) We tackle a significant problem, namely the limited availability

of LoS signals, which is overlooked by the existing works on
WiFi-based indoor localization. We reinvent WiFi signals by ex-
ploiting the dispersion effect, which represents a new direction
of utilizing LWAs.

2) We address a series of non-trivial challenges, such as signal
ambiguity, interference, and multipath effect, etc. The design
of Bifrost effectively ensures the quality of signals used for
localization.

3) We implement Bifrost and evaluate its performance under vari-
ous settings. The results show that the median localization error
of Bifrost is 0.81m, which is 52.35% less than that of SpotFi, a
state-of-the-art approach. SpotFi, when combined with Bifrost
to work in the realistic settings, can reduce the localization
error by 33.54%.

This paper proceeds as follows: §2 introduces background knowl-
edge on the signal polarization and the LWA. Then §3 unfolds the
design of Bifrost in both hardware and software. The implementa-
tion and evaluation results are presented in §4. We discuss practical
issues in §5 and summarize related works in §6. This work is con-
cluded in §7.

2 PRIMER
This section introduces preliminary knowledge of our work: polar-
ization of wireless signals and leaky wave antenna.

2.1 Signal Polarization
Polarization is a fundamental property of wireless signals, including
FSDM and WiFi signals investigated in this work. It represents the
direction of the signal’s electric field, which can be denoted as −→𝐸
and can be decomposed into the horizontal component −→𝐸𝑥 and the
vertical component −→𝐸𝑦 . There will be a phase difference Δ𝜙 ∈ [0, 𝜋]
between these two orthogonal components, leading to the following
elliptic equation[ −→

𝐸𝑥
𝐸𝑥0

]2

+
[ −→
𝐸𝑦

𝐸𝑦0

]2

−
[

2−→𝐸𝑥−→𝐸𝑦
𝐸𝑥0𝐸𝑦0

]2

cos(Δ𝜙) = sin2 (Δ𝜙) , (1)

where 𝐸𝑥0 and 𝐸𝑦0 are amplitudes of −→𝐸𝑥 and −→𝐸𝑦 . According to the
value of Δ𝜙 , the polarization of −→𝐸 can be divided into the following
three categories:

When 𝚫𝝓 = 0 or 𝝅 : we have −→𝐸𝑦 = ±𝐸𝑦0
𝐸𝑥0

−→
𝐸𝑥 , so the signal is linear

polarized (LP), as shown in Fig. 4(a). The polarization direction
hinges on ±𝐸𝑦0

𝐸𝑥0
, the ratio of −→𝐸𝑥 and −→𝐸𝑦 .

When 𝚫𝝓 = ±𝝅
2 : we have −→𝐸𝑥 2 + −→𝐸𝑦2 =

−→
𝐸 2, and now the signal is

circular polarized (CP), as Fig. 4(b) illustrates. Besides, Fig. 4(d) pro-
vides another perspective on how the CP signal is decomposed into
two LP signals. Depending on whether Δ𝜙 is positive or negative,
the rotation direction of the CP signal is in either left-hand circular
polarization (LHCP) or right-hand circular polarization (RHCP),
which are orthogonal and won’t interfere with each other.
When 𝚫𝝓 is Other Values: the signal is elliptical polarized (EP),
as Fig. 4(c) depicts. Similar to the CP signal, the EP signal also can
be divided into left-hand or right-hand.
Impact of Polarization on the Rx: The polarization of a signal
is accorded with that of its transmitting antenna but may change
during propagation. To ensure effective reception, it should match
the polarization of the receiving antenna, partially at least. Fig. 5
illustrates how polarization mismatch affects the received signal
strength (RSS).

For the LP signal and antenna, RSS decreases as the angle of
these two polarization directions increases from 0◦ to 90◦. For the
CP signal, the signal can be decomposed into two orthogonal LP
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Figure 5: RSS variation according to the polarization of signals and
Rx.

signals. Thus, the LP antenna can only receive the component
whose polarization direction is parallel to itself but loses half of the
signal energy. Similarly, the CP antenna can only receive half of the
LP signal’s energy. However, when LHCP antenna is used to receive
RHCP signals or vice versa, RSS is theoretically zero because these
two polarizations are orthogonal. That is the reason why Bifrost
can eliminate the ambiguity of two FSDM signals radiated from
different LWAs.

2.2 Leaky Wave Antenna
LWA belongs to the class of traveling-wave antennas, where the
propagating wave inside the antenna structure can "leak" (i.e., ra-
diate) from the waveguide to the free space, hence the name. It
can distinctively couple the leaky wave’s frequency and radiation
direction to produce a frequency and spatial division multiplex-
ing (FSDM) signal, as shown in Fig. 6. Specifically, direction of the
signal −→𝐸𝑓 with frequency 𝑓 can be determined by [71]:

𝜃 (𝑓 ) = arccos
[
𝛽 (𝑓 )
𝑘0 (𝑓 )

]
, (2)

where 𝛽 (𝑓 ) and 𝑘0 (𝑓 ) are the phase constant along the LWA and
the propagation constant in the free space w.r.t

−→
𝐸𝑓 [52].

Currently, two main types of LWAs have been extensively stud-
ied. 1) The uniform LWA, which employs a metallic waveguide with
a slit cut along its length [21, 22, 42, 76], as depicted in Fig. 6(b).
The FSDM signal leaked from a uniform LWA can only propagate
towards the forward region (i.e., [0◦, 90◦]). 2) The periodic LWA,
which is typically designed using a dielectric substrate with a pe-
riodic array of metal strips (i.e., slots) [10–13] and similar to an
antenna array, as shown in Fig. 6(a). The FSDM signal of this type
of LWA can propagate towards both forward and backward regions
(i.e., [0◦, 180◦]) [33].

Periodic LWA has been widely studied in recent research due to
its versatile slot design and low-cost fabrication using the printed

(a) Periodic structure. (b) Uniform structure.

Figure 6: Typical structures of leaky wave antenna3.

circuit board (PCB) process. These attributes have made it a popular
choice in various applications. Bifrost also employs the periodic
structure to produce circular polarized signals.

3 BIFROST
In this section, we first articulate how to design the circular polar-
ized LWA (i.e., CPLWA) to transform the input LP signal into the
CP signal with the FSDM feature. Then, we present details of our
approach of localization with the CPLWA.

3.1 CPLWA Design
Unlike many traditional LWAs [10, 13, 21, 22], Bifrost utilizes CP4

(i.e., RHCP and LHCP) to distinguish different LWAs and corre-
sponding FSDM signals. We specially design a CPLWA that can
generate both LHCP and RHCP signals. As shown in Fig. 7(a), our
CPLWA has both vertical and horizontal slots to generate orthogo-
nal LP signals, and further to form the CP signal (the bifurcation is
designed for performance optimization). According to Eq. (1), a 𝜋

2
phase difference between two LP signals is necessary to generate
the CP signal, and this is achieved by adjusting the length of the
slots. Denoting the guided wavelength at 5.25GHz of the substrate
material is 𝜆𝑔 , the distance between the center of the horizontal
and the vertical slots is 𝜆𝑔

4 .
In the fabrication process of CPLWA, we adopt a two-layer

copper-clad substrate structure, as shown in Fig. 7(b). The sub-
strate material is F4BM-2, whose permittivity 𝜖 = 3.02. The top
and bottom layers of the substrate consist of copper and have un-
dergone tin immersion plating to prevent oxidation. The bottom
layer of copper functions as the ground, and the shorting vias are
incorporated to penetrate the substrate, connecting the top and
bottom layers in order to ground the top layer. These shorting vias
are periodically arranged on the upper and lower boundaries of the
substrate and the patch.

The final structure of our proposed CPLWA is depicted in Fig. 7(c),
where multiple units are linearly arranged together to enhance the
directivity of the FSDM signal, which is similar to the antenna array.
Note that a CPLWA is composed of 6 units as an illustration, but
11 units are arranged in practice. This CPLWA features two ports
on both ends: one is the feed port that connects to an LP antenna
for absorbing the WiFi signal, and the other should connect to a

3It is worth noting that the 2D radiation pattern is used here for illustration purposes.
In reality, the radiation pattern of the leaky wave with a specific frequency is more
like a cone, with a generatrix along the propagation direction of the traveling wave.
4Unless otherwise specified, CP signals stand for both RHCP and LHCP signals.
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(a) Unit of the LWA. (b) Layered structure.

(c) Complete design.

Figure 7: General view of CPLWA used in Bifrost.

matched 50Ω load. By changing the signal feed port, polarization
of the FSDM signal can switch between LHCP and RHCP. If the
input signal has gone through all slots and reached the other end,
yet still has energy remaining, the matched load will absorb the
excess signal.

The CPLWA used in Bifrost is specially designed at 5.17GHz-
5.33GHz WiFi band, while this structure and design methodology
are universally applicable for other frequencies and bandwidths by
properly modifying the relevant parameters.

Now we conduct a quick validation to show the key performance
of the proposed CPLWA using ANSYS HFSS. Firstly, the direction
of the FSDM signal w.r.t different frequencies is depicted in Fig. 8(a).
There is a total 22◦ field of view (FoV) across the operating fre-
quency band (5.17GHz-5.33GHz). Note that when the LP signal is
fed into the right port or left port, the RHCP or LHCP signal will
be radiated from 22◦ to 44◦ or 136◦ to 158◦, respectively. Fig. 8(b)
shows the energy distribution of signals at five different frequencies.
It is evident that the energy of the leaky signal concentrates on
the correct direction, and their realized gains are all above 11.5dB.
Therefore, the direction can be easily identified by examining the
energy distribution of signals.

With the proposed CPLWA, we will proceed with elaborating
on the core localization algorithm in Bifrost.

3.2 Basic Localization Model
Let 𝑆𝑙 and 𝑆𝑟 respectively denote LHCP and RHCP signals that
propagate from corresponding LWAs to the target via the LoS
paths. The frequencies of these two signals, 𝑓𝑙 and 𝑓𝑟 , are what
we desire for calculating the location. Recall that 𝑆𝑙 and 𝑆𝑟 are
featured in frequency and space division multiplexing (FSDM) and
orthogonal CP5, so these two signals won’t interfere with each
other. As a result, the target can estimate its relative direction
to both LWAs based on the received spectrum and the radiation
pattern of the two LWAs. Further, given locations of two LWAs,
𝐿𝑟 (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ) of the RHCP LWA and 𝐿𝑙 (𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙 ) of the LHCP
LWA, the target can output its absolute location. In detail, as we
mentioned in §2, the radiation pattern of the LWA is a conical

5Unless stated otherwise, CP signals have the property of FSDM.
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Figure 8: Key results of the CPLWA.

surface at a specific frequency. Therefore, the location 𝐿𝑡 (𝑥𝑡 , 𝑦𝑡 )
of the target device is the intersection point of the two conical
surfaces and the horizontal plane of its height. By combining these
conditions, 𝐿𝑡 can be estimated by solving the following equation
set:

𝐿𝑡 = (𝑥𝑡 , 𝑦𝑡 ) =


𝐹 (𝐿𝑟 , 𝑓𝑟 ) ,
𝐹 (𝐿𝑙 , 𝑓𝑙 ) ,
𝑧 = 𝑧𝑡

(3)

where 𝑧𝑡 is the target’s height; functions 𝐹 (𝐿𝑟 , 𝑓𝑟 ) and 𝐹 (𝐿𝑙 , 𝑓𝑙 ) are
mathematical equations of conical surfaces with the location of
LWAs as the vertex. These two equations indicate the propagation
directions of RHCP and LHCP signals at frequencies 𝑓𝑟 and 𝑓𝑙 ,
respectively. Taking the RHCP signal as an example, 𝐹 = 𝐹 (𝐿𝑟 , 𝑓𝑟 )
can be formulated as

𝐹 = (𝑥 − 𝑥𝑟 )2 − (𝑦 − 𝑦𝑟 )
2

𝑎2 − (𝑧 − 𝑧𝑟 )
2

𝑎2 , (4)

where 𝑎 = cot [𝜃 (𝑓𝑟 )].
However, there are two other types of signals impacting the

localization accuracy when Bifrost functions: 1) LP WiFi signal
that is emitted by the WiFi AP, and then received by the target. This
signal establishes data communication between the target and the
AP and propagates in both the LoS path and multipath. It is also the
input signal of LWAs, which will be transformed into FSDM signals
by the LWAs. 2) CP multipath signal that propagates from LWAs to
the target after reflection, resulting in undesired noisy signals at
the target.

Thus, we should first identify the frequency of the FSDM signal
from the LP WiFi signal (discussed in §3.3) and then filter out the CP
multipath signal as much as possible (discussed in §3.4 and §3.5), to
accurately estimate frequencies, 𝑓𝑙 and 𝑓𝑟 , and the target’s location.

3.3 Identifying Frequencies of CP signals
When Bifrost functions, LWAs need the LP WiFi signal as input,
and the target device may also need it for data communication with
the WiFi AP. Nevertheless, the LP signal may interfere with the
reception of the CP signal, because CP antennas at the target device
can receive the LP signal (as already explained in §2). To cancel
this interference, we control LWAs to be periodically turned on
and off, working in a duty-cycled manner. This design allows the
target to identify frequencies that correspond to the CP signal by
analyzing the variation in its received spectrum, and at the same

380



SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Yimiao Sun, et al.

-300 -50 200 450 700
Subcarriers

St
d.

Ph
as

e

-300 -50 200 450 700
Subcarriers

St
d.

Am
p.

LoSMultipath Multipath Multipath

(a) Normalized amplitude variation.

(b) Normalized phase variation.
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time, saves energy of LWAs. Specifically, we exploit WiFi CSI [27,
28, 75, 78] to explore fine-grained information on the amplitude
and phase of the subcarriers. Fig. 9 illustrates the result of a proof-
of-concept experiment, where subcarriers correspond to LoS and
multipath signals are distinguishable in the normalized amplitude
of CSI. However, the variation in phase is not obvious, making it
challenging to discern useful subcarriers because they are often
obscured by random errors and noise. According to this result, we
can only extract frequencies of the CP signal based on the amplitude
variation in CSI.

As a LWA turns on or off, we denote the corresponding CSI as
𝐻𝑜𝑛 (𝑓𝑘 ) and𝐻𝑜 𝑓 𝑓 (𝑓𝑘 ) for the𝑘-th subcarrier with center frequency
𝑓𝑘 , respectively. The former is jointly influenced by CP and LP
signals, while the latter is determined by the LP signal only, leading
to the following relationship:

∥𝐻𝑜𝑛 (𝑓𝑘 )∥ = ∥𝐻𝐶𝑃 (𝑓𝑘 ) + 𝐻𝐿𝑃 (𝑓𝑘 )∥ ,
∥𝐻𝑜 𝑓 𝑓 (𝑓𝑘 )∥ = ∥𝐻𝐿𝑃 (𝑓𝑘 )∥ ,

(5)

where ∥𝐻𝐶𝑃 (𝑓𝑘 )∥ is the amplitude of subcarriers corresponding
to the CP signal, and ∥𝐻𝐿𝑃 (𝑓𝑘 )∥ is that of the LP signal. Based on
these two values, we can quantify the variation of CSI caused by
the CP signal:

∥Δ𝐻 (𝑓𝑘 )∥ = ∥𝐻𝐶𝑃 (𝑓𝑘 )∥
= ∥𝐻𝐶𝑃 (𝑓𝑘 ) + 𝐻𝐿𝑃 (𝑓𝑘 )∥ − ∥𝐻𝐿𝑃 (𝑓𝑘 )∥ (6)
= ∥𝐻𝑜𝑛 (𝑓𝑘 )∥ − ∥𝐻𝑜 𝑓 𝑓 (𝑓𝑘 )∥

In order to accurately analyze this variation and mitigate the
effect of occasional outliers and noise, a Z-Score normalization
procedure is performed on ∥Δ𝐻 (𝑓𝑘 )∥. We execute a preliminary
screening to quickly filter out the subcarriers that are less likely
corresponding to the frequencies of the CP signals. A percentage
threshold 𝜀 ∈ [0, 1] is set to select subcarriers with a larger value
of ∥Δ𝐻 (𝑓𝑘 )∥, indicating that these subcarriers undergo significant
changes and are more likely to be affected by the CP signal. The
value of 𝜀 is chosen empirically based on the degree of multipath.
Fig. 10(a) shows a high-level overview of the selected subcarriers,
where LHCP and RHCP signals are highlighted in red and blue,

Range for 
Localization

Changed SubcarrierChanged Subcarrier Stable SubcarrierStable Subcarrier

LH
mink LH

maxk

LH
mink LH

maxk

RH
mink RH

maxk

LoS

Multipath Multipath Multipath

MultipathMultipath Multipath

LoS

RH
mink RH

maxk

LHK

RHK

(a) Selecting frequencies of CP signals.

(b) Filtering out multipath signals.

(c) Align subcarriers. (d) Estimate frequencies.

Figure 10: Workflow of selecting correct frequencies (LHCP and
RHCP are distinguished by red and blue colors).

respectively. In subsequent stages, we exclusively focus on these
selected subcarriers.

3.4 Filtering out the Multipath Signal
As shown in Fig. 9(a), even though we have identified the frequen-
cies of the CP signal from the WiFi signal, there still exists the multi-
path signal, resulting in undesired variation in ∥Δ𝐻 (𝑓𝑘 )∥. Note that
the multipath signal is mainly introduced by reflection of the CP
FSDM signal. We find that subcarriers corresponding to the multi-
path signal can be divided into two categories: 1) Sparsely clustered
subcarriers 𝐶𝑠 : FSDM signal with different frequencies and prop-
agation directions may go through reflection at many places, but
only a few of those signals reach the target with inconsecutive
frequencies, resulting in many sparse clusters of subcarriers6. 2)
Compactly clustered subcarriers 𝐶𝑐 : There are some FSDM signals
with frequencies close to that of the LoS signal. Those FSDM sig-
nals reflect just right near the target device, which will result in a

6The polarization of the signals may flip after reflection, and we deal with it as the
multipath signal in the frequency domain. Thus, this flip doesn’t affect the function of
our algorithm.
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compact and wide cluster of subcarriers influenced by multipath
and LoS signals.

Here we first try to filter out 𝐶𝑠 . To do so, all the varied subcar-
riers are clustered, respectively, as Fig. 10(b) illustrates. Then, the
following integral function will be calculated for every cluster to
find the one most likely to be corresponding to the LoS signal,

𝐶𝑖 =
∫ 𝑓 𝑖𝑘max

𝑓 𝑖
𝑘min

∥Δ𝐻 (𝑓 𝑖𝑘 )∥ 𝑑 𝑓 𝑖𝑘 (7)

where 𝑓 𝑖
𝑘min

and 𝑓 𝑖
𝑘max

are the minimum and maximum frequencies
of the 𝑖−th cluster, respectively. The value of 𝐶𝑖 can be regarded as
the area formed by the curve of ∥Δ𝐻 (𝑓 𝑖

𝑘
)∥ and the two frequencies

𝑓 𝑖
𝑘min, 𝑓 𝑖

𝑘max. The wider the bandwidth and higher the amplitude
of a cluster are, the greater the value of its 𝐶𝑖 is.

After that, we only retain the cluster that bears the highest 𝐶𝑖 ,
which is most likely to be 𝐶𝑐 and contains subcarriers correspond-
ing to the LoS signal. However, as we mentioned before, some
subcarriers in 𝐶𝑐 are also corresponding to the undesired multi-
path signal. Next, we are going to purify𝐶𝑐 by narrowing down its
frequency range as much as possible.

3.5 Purifying the LoS Signal for Localization
Denote the frequency range of𝐶𝑐 as

[
𝑘𝑟min, 𝑘

𝑟
max

]
for RHCP signals

and
[
𝑘𝑙min, 𝑘

𝑙
max

]
for LHCP signals. In both of the two ranges, we are

going to find the subcarrier with the largest ∥Δ𝐻 (𝑓𝑘 )∥ as Fig. 10(c)
illustrates. After obtaining them, we denote the index of selected
subcarriers as𝐾𝑟 and𝐾𝑙 . Next, as Fig. 10(c) depicts, we align𝐾𝑟 and
𝐾𝑙 , then trim the head and tail to retain the intersection of two clus-
ters, ∥Δ𝐻𝑟 (𝑓𝑘 )∥ and ∥Δ𝐻 𝑙 (𝑓𝑘 )∥. Finally, we multiply ∥Δ𝐻𝑟 (𝑓𝑘 )∥
and ∥Δ𝐻 𝑙 (𝑓𝑘 )∥ to form a weight matrix 𝐺 , which is illustrated in
Fig. 10(d).

𝐺 =



∥Δ𝐻𝑟 (𝑓𝐾𝑟 −𝛿 )∥

...

∥Δ𝐻𝑟 (𝑓𝐾𝑟+𝛿 )∥


×

[
∥Δ𝐻 𝑙 (𝑓𝐾𝑙−𝛿 )∥ ...∥Δ𝐻 𝑙 (𝑓𝐾𝑙+𝛿 )∥

]
(8)

where 𝛿 is half the length of the vectors ∥Δ𝐻𝑟 (𝑓𝑘 )∥ and ∥Δ𝐻 𝑙 (𝑓𝑘 )∥.
Then, we estimate 𝑓𝑟 and 𝑓𝑙 by computing the weighted average

of values in [𝑓𝐾𝑟 −𝛿 , 𝑓𝐾𝑟+𝛿 ] and
[
𝑓𝐾𝑙−𝛿 , 𝑓𝐾𝑙+𝛿

]
, which are weighted

by the corresponding values in the matrix 𝐺 . The purpose of this
step is still to mitigate the interference of the multipath signal. After
that, the estimated values of the two frequencies will be fed into
Eq. (4) to output an estimation of the target’s location. Note that
if there are multiple WiFi links for selection, one can choose the
link that results in the smallest size of ∥Δ𝐻 ′ (𝑓𝑘 )∥, meaning that
the range of LoS signals’ frequency is reduced to the minimum.

Note that the basis of our localization algorithm is using the
different CP signals to distinguish different LWAs, and the CP sig-
nals can’t be replaced by the LP signals. The reason is that the LP
signals may lead to high localization errors or even the breakdown
of the localization system. Specifically, once the orientation of LP
devices changes, polarization directions of these devices change
accordingly. As such, each receiving antenna is very likely to re-
ceive FSDM signals from both LWAs and can’t distinguish them.

Leaky Wave Antenna Low Noise 
Amplifier

LP Antenna

Matched Load

LHCP Antenna

Antenna Mount

RHCP Antenna

3.
87

cm

24.2cm

(a) Target. (b) LWA.

Figure 11: Hardware Settings.

For example, a receiving antenna with 0◦ polarization can receive
both 0◦ and 90◦ polarized FSDM signals after rotating 45◦. In this
case, the target can’t distinguish FSDM signals from the two LWAs,
and then the localization system can’t work. Note that this problem
can’t be avoided since the target antenna’s orientation isn’t known
in advance. In contrast, CP signals are free from this problem. The
RHCP signal can’t be received by LHCP antennas no matter which
orientation the target antenna has.

Next, we will proceed with describing the prototype implemen-
tation to gain insights on the performance of Bifrost in varied
settings.

4 EVALUATION
We evaluate the performance of Bifrost, using two low-cost PCB-
based LWAs working at 5.17GHz-5.33GHz and a WiFi sensing plat-
form called PicoScenes [38] to extract CSI. When Bifrost func-
tions, the WiFi transceiver communicates at the same band based
on 802.11ax standard [1]. We first describe our implementation and
evaluation settings in §4.1. Then, investigation on Bifrost’s per-
formance is four-pronged: §4.2 compares Bifrost with SpotFi [43],
the state-of-the-art indoor WiFi localization technique, in a real-
world indoor setting and NLoS scenarios, and then shows how the
localization accuracy can be improved when Bifrost aids SpotFi
to function in AP-constrained scenarios; Subsequently, in §4.3, we
conduct an ablation study to evaluate the contribution of each
sub-module of localization algorithm; Then, in §4.4, we dissect the
impacting factors on localization accuracy, including multipath,
transmission power, as well as the distance between LWAs and the
AP; Also, we evaluate the influence of deploying Bifrost on data
communication of WiFi transceivers in §4.5; Finally we summarize
the evaluation in §4.6.

4.1 Implementation and Experimental
Methodology

Hardware and Software. Our proposed LWA is shown in Fig. 11(b).
The main body of our LWA is 24.2cm × 5.2cm, containing 11 single
units designed to ensure most input signals’ energy can be leaked
out. One of the LWA’s feed ports is connected to a LP antenna for
receiving the WiFi signal while the other port is connected to a
50Ω matched load to absorb the remaining energy of the signal
that goes through the entire LWA structure. By switching the feed
port, the polarization of the FSDM signal can be altered between
LHCP and RHCP. Besides, a low-noise amplifier powered by a small
rechargeable battery is utilized to boost the input signal with 0.43W
power consumption. A NE555 timer IC with a load switch circuit
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Figure 12: Experimental scenarios and deployment: (a) The hall
scenario; (b) The classroom scenario; (c) The APs’ deployment in the
corridor and the classroom; (d) The APs’ deployment in the hall and
the meeting room.

is employed to control the on-off state of the amplifier and further
LWAs, resulting in a 20% duty-cycled manner for energy saving.
The cost of each proposed LWA is 7.41 USD, where 4.36 USD is for
the material cost and 3.05 USD is for the control circuit. To receive
the CP FSDM signal, we equip the target with two 3.87cm × 3.87cm
patch antennas, as Fig. 11(a) depicts. One antenna is LHCP, while the
other is RHCP, and both are fixed on the antenna mount connected
to COMFAST AX210 WiFi card [17] on the host computer.

We use PicoScenes, a WiFi sensing platform, to send WiFi packets
at AP with 20dBm, and extract CSI at the target. In the working band
of Bifrost, PicoScenes can procure CSI data of 2025 subcarriers
with indexes [-1012, 1012]7. We run PicoScenes on Ubuntu 20.04,

7PicoScenes automatically interpolates the 0-th and other 32 pilot subcarriers besides
1992 tone RUs in this band.

then analyze CSI data and execute the localization algorithm on
MATLAB 2022b.
Baseline. We compare Bifrost with SpotFi, the state-of-the-art in-
door WiFi localization technique, under various settings. To ensure
the validity of our results, we make our best effort to re-implement
SpotFi and ensure fairness through comparison. We evaluate the
performance of SpotFi by deploying multiple WiFi APs strictly
based on the real-world settings of WiFi APs, as Fig. 12 shows. Before
each set of experiments, we use a laser rangefinder to obtain the
ground-truth, including coordinates of the target device and LWAs.
Scenarios and Deployment. We select four typical indoor sce-
narios for evaluation, across different sizes and different levels
of multipath effect: 1) A small-size hall (6.2m × 4.5m) with few
multipath; 2) A long and narrow corridor (7.5m × 2.1m) with few
multipath; 3) A small-size meeting room (5.7m × 4.9m) with rich
multipath; 4) A large-size classroom (10.6m × 7.1m) with rich mul-
tipath. In each scenario, two LWAs are attached to two orthogonal
walls. The target device is mounted onto tripods, keeping the height
constant across all experiments.

4.2 Overall Performance
In this section, we first evaluate the localization accuracy of Bifrost
and SpotFi in real-world settings, where WiFi APs in experiments
are deployed at the same positions as those in practice. Then we
deploy Bifrost in the meeting room and classroom, where SpotFi
doesn’t work well, to enhance the performance of SpotFi, so as to
see the accuracy improvement brought by Bifrost.
Performance Comparison in Realistic Settings. In reality, most
indoor WiFi APs are dispersively deployed at different locations and
very likely separated from each other by walls so that LoS paths are
usually obstructed. Thus, the target device is hard to establish more
than one LoS connection with APs, according to our real-world
investigation (i.e., Fig. 2). We evaluate the performance of SpotFi
in these practical indoor settings, and also the localization error of
Bifrost when deployed in the above-mentioned four scenarios. 50
locations are chosen in each scenario for location estimation. The
evaluation results are reported in Fig. 13 (The solid blue line stands
for Bifrost and the dashed red line stands for SpotFi).

In the hall, both Bifrost and SpotFi are supposed to exhibit
the best performance due to the low-level multipath effect, but
the median error of SpotFi is 1.23m, which is more than 2× of
Bifrost’s 0.61m. This is because only one decent LoS signal can
be obtained at most locations due to the blockage of walls even
though three APs are deployed around. As the pie chart illustrates,
SpotFi outperforms Bifrost at only 9 locations. When it comes
to the corridor scenario, the median error of SpotFi increases to
1.77m because two of the three APs are situated inside rooms so
that AoAs obtained by the target are heavily distorted. We note that
the median error of Bifrost also increases to 0.76m. This slight
performance degradation is mainly due to the extension of the
localization range, which is further investigated in §4.4.

Next, we switch to the meeting room where more pronounced
multipaths exist. What’s worse, there is no AP in the meeting room,
more challenging for both two approaches to function. The accu-
racy of the two approaches is unsurprisingly degraded, where the
median error is 1.95m in SpotFi and 0.91m in Bifrost. Similarly, the
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Figure 13: Overall performance of Bifrost and SpotFi across different scenarios (The pie charts represent how many locations where each
method shows a lower error).

(a) The NLoS AP outdoors. (b) The NLoS AP indoors.

Figure 14: Deployment of the NLoS settings.

performance of SpotFi is restrained due to the lack of the LoS signal.
Bifrost exhibits acceptable performance in this tough environ-
ment and avoids escalation of errors. This can be attributed to two
aspects. On one hand, Bifrost can function once the input signal
has enough energy, without the need for LoS AP. On the other
hand, Bifrost exploits a delicate algorithm to tame the multipath
effect. We will further discuss issues of multipath and NLoS in §4.4.
In this scenario, SpotFi doesn’t outperform Bifrost on any point.

Finally, we set SpotFi and Bifrost in the large-size classroom
with rich multipath. With a LoS AP, the median error of SpotFi is
reduced to 1.87m, which is better than that in the meeting room
with no LoS AP. By contrast, the median error of Bifrost increases
to 1.20m, mainly due to a longer distance between LWAs and WiFi
APs and more multipath.

Through all experiments in four scenarios, the median error
of Bifrost is 0.81m, which is 52.35% less than that of SpotFi (i.e.,
1.70m). Bifrost outperforms SpotFi at most locations, except at
which the target can obtain 3 LoS signals from 3 APs. However, as
shown in Fig. 13, the chance for SpotFi to achieve better perfor-
mance is less than 7%.
Performance Comparison in NLoS Scenarios. Then we conduct
two groups of experiments to demonstrate Bifrost’s ability of
localization in NLoS scenarios and compare its performance with
that of SpotFi.

In the first group of experiments, we deploy the localized target
and the LWAs in a hall. As Bifrost only uses one AP to function,

we evaluate the performance of Bifrost when this AP is inside
and outside the hall (i.e., LoS and NLoS scenarios). The results in
Fig. 15 show that the median errors of Bifrost are 0.61m in LoS
and 0.73m in NLoS, respectively. Meanwhile, in the same hall, we
also evaluate the performance of SpotFi in LoS and NLoS scenarios,
respectively. In the LoS scenario, 3 APs are deployed in the hall
and can establish LoS connections with the target. In the NLoS
scenario, as Fig. 14(a) shows, one of the APs (i.e., AP1) is outside the
room, while the other 2 APs (i.e., AP2 and AP3) can connect with
the target along the LoS paths. We find that the median error of
SpotFi increases from 0.45m in LoS to 1.15m in NLoS. The error may
further go beyond 1.6m if only one AP is left in LoS, as reported
in [43].

In the second group of experiments, we compare the performance
of Bifrost and SpotFi using a different NLoS setting. As Fig. 14(b)
shows, we deploy the localized target, LWAs and three APs in the
same hall. One of the three WiFi APs (i.e., AP1) is deliberately
deployed around the corner and surrounded by multiple chairs, so
it can’t establish LoS connections between the target or the LWAs,
while the other 2 APs (i.e., AP2 and AP3) can connect with the
target along the LoS paths. SpotFi uses all 3 APs to localize the
target, and its median error is 1.21m. Bifrost only uses the AP in
NLoS (i.e., AP1) to function, and its median error is 0.69m, which is
42.98% less than that of SpotFi.

These two groups of experiments demonstrate that Bifrost
provides relatively stable performance when the WiFi AP is in LoS
and NLoS scenarios. In NLoS scenarios, Bifrost can achieve much
more accurate performance than SpotFi.
Performance Enhancement when Bifrost Aids SpotFi. Next,
we deploy Bifrost where SpotFi shows poor accuracy to see if
Bifrost can aid SpotFi to improve localization accuracy. Actually,
it is impossible to deploy Bifrost everywhere, so we choose the
meeting room and classroom where localization accuracy is heavily
affected by constrained APs and reports the worst results. Specifi-
cally, when the target gets into these two scenarios, its location will
be reported by Bifrost. Otherwise, the target keeps using SpotFi
for indoor localization.

As shown in Fig. 16, the median localization error is 1.13m when
Bifrost aids SpotFi, achieving 33.54% error reduction compared
with SpotFi operating independently in all scenarios. This indicates
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that Bifrost can not only work independently, but also enhance
localization accuracy of existing localization techniques.

4.3 Ablation Study
There are three crucial sub-modules in Bifrost’s localization al-
gorithm, that is, identifying the frequencies of CP signals (mod-
ule 1 presented in §3.3), filtering out the multipath signal (module
2 presented in §3.4) and purifying the LoS signal for localization
(module 3 presented in §3.5). We conduct an ablation study to eval-
uate the contribution of each sub-module to localization accuracy.
The evaluation is conducted under four settings, S1: without any
sub-module, S2: only with module 1, S3: with modules 1 and 2, and
S4: with all three modules.

Fig. 17 reports the results of this ablation study. If we do nothing
and directly extract frequencies from raw amplitude data of CSI,
the median localization error will surge to 3.31m (S1). Instead, once
the LP WiFi signal is filtered out, the frequencies of CP signals can
be highlighted, which results in the median localization error of
1.51m (S2). Further, the results of S3 and S4 show that the median
error will be reduced to around 0.93m and 0.81m if we filter out the
multipath signal and purify the LoS signal. These results show the
necessity and contribution of each module in our design.

4.4 Impacting Factors
Next, we analyze the impact of three different factors on the per-
formance of Bifrost, that is, multipath in the environment, the
transmission power, as well as the distance between LWAs and
WiFi AP.
Multipath. We examine the AoA estimation accuracy of Bifrost
in multipath scenarios. We fix the positions of LWAs and the target,
then change the number of indoor objects (i.e., chairs and desks) to
create different degrees of multipath. Specifically, two desks are first
set in the room to emulate a light multipath environment, and then
ten chairs are further added to produce richer signal reflections.
The results in Fig. 18 indicate that the AoA estimation accuracy
degrades as the multipath is intensified, where the median angle
error initially sits around 3.8◦, and then increases to around 6.7◦.
The more multipath exists, the more sparsely clustered subcarriers
𝐶𝑠 are formed. Thus, when these clusters are stacked with each
other to form a wider cluster, there is a certain chance for our

algorithm to misidentify the wrong LoS signal, causing greater
errors in AoA estimation.

We also note that Bifrost maintains relatively stable perfor-
mance across different polarizations. The difference between me-
dian errors of LHCP and RHCP signals is less than 0.3◦, which
underscores the robustness of our proposed LWA and localization
algorithm.
Transmission Power. The default transmission power of AP is
20dBm in our above-mentioned evaluations, and we now vary
this value to investigate its impact on localization performance.
Moreover, as mentioned before, we can’t always guarantee that
the WiFi AP establishes LoS path with LWAs, so we also compare
the situation of the AP at LoS and NLoS scenarios in each setting
of transmission power. We place AP at 2m distance outside the
door and the target 2m inside the door, switching between the LoS
and NLoS scenarios by opening and closing the door. Results in
Fig. 19 show that decreasing the transmission power leads to an
increase in the localization error, regardless of whether the AP is at
LoS or NLoS. Besides, the errors in LoS scenario are always lower
than that of NLoS for the same transmission power. These findings
indicate the negative impact on localization performance that NLoS
can have.

However, we also observe that as the transmission power in-
creases, the impact of NLoS on the performance of Bifrost de-
creases, albeit gradually. Notably, when the transmission power
is set at 20dBm, the median errors are 0.61m and 0.73m at LoS
and NLoS scenarios, respectively. In practical scenarios, this perfor-
mance is sufficient to meet the requirements of most location-based
applications.
Distance between AP and LWAs. The performance of Bifrost
may be influenced by the energy of the input WiFi signal fed into
LWAs, because it determines the SNR (signal-to-noise ratio) of the
FSDM signal. The energy of the input WiFi signal is mainly related
to two factors, namely the transmission power and the distance
between the AP and LWAs. While the former factor is previously
discussed, we here probe into the impact of distance. We carry out
the experiments along the corridor and remove the reflectors as far
as possible, while the distance is set to 2.5m, 5m, 7.5m, and 10m.
Results in Fig. 20 demonstrate that the localization error increases
with distance and may even result in outliers. The median errors are
0.63m, 0.65m, and 0.93m in the first three groups of experiments,
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Figure 19: Impact of the transmis-
sion power.
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Figure 20: Impact of the distance
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Figure 21: Impact on the AP and
the target of Bifrost.
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Figure 22: Impact on other WiFi con-
nections.

all of which are below 1m, yet spike to 1.49m in the setting of
10m distance. Despite this, the range of 7.5m is sufficient to cover
most rooms in a typical building, thus ensuring the feasibility of
Bifrost’s function.

4.5 Impact on Communication
In this section, we evaluate the impact of deploying Bifrost on the
WiFi connections, including the connection between the AP and
the target as well as other connections. Firstly, we control the AP to
transmit 1000 packets at a 50 ms interval, and the packet loss rate is
recorded in each group of experiments. The results in Fig. 21 show
that the median packet loss rates are 3.92‰ and 3.71‰ when the
LWA is on and off, respectively. This 0.2 ‰ difference implies that
the function of Bifrost has a negligible influence on the AP-target
communication.

Secondly, we place Bifrost’s transceiver at an intersection re-
gion covered by two commercial APs (AP1 in a classroom and AP2
in a laboratory) with good signal quality. We then use different
off-the-shelf smartphones to establish WiFi connections with these
APs and record the variation in throughput over 2 hours for each
connection (C1: OnePlus 9-AP1, C2: iPhone 13-AP2, C3: OnePlus
9-AP1, and C4: iPhone-13-AP2). The results are shown in Fig. 22.
We find that the median throughput degrades 2.7% and 0.4% in C1
and C3, which have nearly no impact on the network quality or
user experience. Interestingly, the throughput increases when the
LWAs are turned on for C2 and C4. We attribute this increase to
the statistical error that is mainly caused by changes in network
quality and wireless channels.

4.6 Summary of Evaluation
Based on the above evaluations on Bifrost, the following summary
can be drawn:
1) The median localization error of Bifrost is 0.81m, which is

52.35% less than that of SpotFi in arguably realistic indoor set-
tings.

2) Bifrost can be deployed in scenarios without enough APs to
help SpotFi enhance performance, reducing the overall localiza-
tion error of SpotFi by 33.54%.

3) Distance between LWAs and APs, multipath and transmission
power influence Bifrost’s performance differently, yet the ab-
solute accuracy never degrades drastically.

4) The deployment of Bifrost has a negligible impact on the
communication quality of either the link between the AP and
the target or other WiFi connections.

5 DISCUSSION
In this section, we discuss practical issues concerning the applica-
bility and efficacy of Bifrost.
Complexity of Deployment. Deploying Bifrost can be easy
and straightforward via two steps: stick LWAs to the wall, and
measure LWAs’ coordinates. Compared with most existing indoor
localization methods, Bifrost works in a plug-and-play manner,
requiring neither complex configurations nor additional operations
on APs and the target.
FoV and Coverage of LWAs. Bifrost achieves 22◦ FoV in the
current prototype by using 160MHz bandwidth (5.17GHz - 5.33GHz).
The FoV and coverage can be expanded by using the entire WiFi
band, including frequencies at 2.4GHz, 5.2GHz, and 5.8GHz [47].
This expansion is feasible because most existing WiFi devices have
supported dual- or tri-band functionality.
Applicability. Considering that most of the current commercial
WiFi devices are equipped with LP antennas, they may be not
compatible with Bifrost yet. There are two potential solutions
to enhance the applicability of Bifrost. On one hand, some com-
mercial off-the-shelf CP antennas (e.g., CP flat patch antennas [45]
of L-com, Inc) are developed to be integrated with existing WiFi
APs. Bifrost can be deployed on such devices. On the other hand,
in our future work, we will study how to utilize LP rather than
CP signals to improve the applicability of Bifrost. To distinguish
LWAs using the LP signals, different phase shifts or OOK patterns
may be exploited.

Besides, the indoor obstacles may also influence the applicability
of Bifrost. The reason is that the localization performance will
degrade if the LoS paths between LWAs and the target are blocked
by the obstacles. Therefore, one may select proper positions to
deploy LWAs to avoid NLoS propagation to the target to be localized.
However, the LoS path between LWAs and the WiFi AP isn’t a
precondition. As long as the LWAs can receive the signal from the
WiFi AP, Bifrost can work.
Lifetime and Maintenance Cost. The rated current of LWAs is
0.86mA. A LWA is powered with a 1600mAh battery and works
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at 20% duty cycle. So the estimated lifetime of a LWA is over 9302
hours (≈ 387 days) and the maintenance cost is recharging the
battery once every 387 days.
Potential Interference. One may be concerned that if multiple
LWAs are deployed closely, LWAs with the same polarization will
interfere with each other. However, each room only has one RHCP
LWA and one LHCP LWA in the setting of Bifrost, so LWAs with
the same polarization are separated by walls. Interference signals
must propagate through the wall, after which they only have low
strength. Therefore, different pairs of LWAs hardly interfere with
each other.

6 RELATED WORK
In this section, we briefly summarize existing works in the fields
related to our work.

6.1 Application of LWA
The work closest to ours is 123-LOC [42], which presents a THz
LWA with two perpendicular slots to radiate horizontal and vertical
polarized FSDM signals. Range and angle estimation is then per-
formed by the receiver based on the bandwidth and frequencies of
received signals. In comparison, Bifrost reduces the impact of mul-
tipath and achieves room-scale localization, which is a challenging
task for THz signals.

LeakyTrack [21] tracks the object between two LWAs based on
the observation that nodal and environmental motion changes the
received spectral profile of FSDM signals. [76] investigates the se-
curity of THz networks with LWAs and shows that FSDM signals
of the LWA can hinder eavesdroppers, e.g., by using a wide-band
transmission. [20] and [22] study single-shot link discovery with
the help of FSDM signals from the LWA. A receiver can discover the
direction of the path from the transmitter in one shot. In contrast
to those works that require a specific feeding device for THz LWA,
Bifrost operates in the WiFi band and works in a plug-and-play
manner, providing better applicability and convenience. Addition-
ally, Bifrost addresses relevant challenges, including multipath,
noise and ambiguity, by delicately designing the hardware and
localization algorithm.

6.2 WiFi-based Indoor Localization
There have been numerous efforts on indoor localization with
WiFi [16, 49, 61, 68–70, 84]. Traditional fingerprint-based tech-
niques have been widely used by mapping the RSS readings from
multiple APs with locations [46, 66]. Techniques based on AoA
and ToF have become more prevalent recently. For example, Array-
Track [69] proposes an AoA-based WiFi localization system that
incorporates multiple APs and the Multiple Signal Classification
(MUSIC) algorithm. SpotFi [43] proposes a MUSIC algorithm to
obtain AoA and ToF simultaneously. The 𝑀3 system [16] reduces
the amount of APs to only one by utilizing multipath signals and
frequency hopping among multiple channels.

Despite such inspiring advances, the existing proposals may
chop up the communication link between the target and the AP
when the target hops between different APs or channels. In contrast,
Bifrost does not interfere with the communication link, which

supplements the APs’ localization ability, without compromising
their communication ability.

6.3 Polarization of the Wireless Signal
LLAMA [15] designs a metasurface to mitigate polarization mis-
match by rotating the polarization of wireless signals, which is
achieved by applying the bias voltage to the orthogonal compo-
nents (like −→𝐸𝑥 and −→𝐸𝑦 shown in Fig. 4) of input signals. RoS [55]
and mmTag [51] propose well-designed Van Atta arrays. They all
change the polarization of input mmWave signals to the orthog-
onal one to deal with the self-interference between the incoming
signals and the backscattered signals. IntuWition [77] observes that
different materials can reflect and scatter the incoming polarized
signals in different ways, based on which it exploits the technique
to classify various materials. SiWa [83] utilizes the similar principle
to inspect the wall structure without undermining the structural
integrity.

The above-mentioned works mainly focus on mutable LP sig-
nals. Bifrost instead explores the use of orthogonal CP signals,
providing more robust performance.

6.4 Backscatter-aided Localization
Enabled by the backscatter technology [8, 26, 29–31, 37, 53, 55, 58],
many novel applications are enabled, one of which is localization.
Both Hawkeye [8] and Millimetro [58] design backscatter tags
based on Van Atta arrays to enhance the energy of backscatter
signals, so they can localize tags in long range (over 100m). By
assigning unique OOK modulation frequencies to different tags,
those two works can also identify and localize tags simultaneously.
Moreover, RFID technology [34–36, 39–41] has been widely used
in localization tasks. As a typical backscatter technology, RFID can
modulate information via the RFID tags. Then, RFID reader can
usually infer the range or orientation to the tags by analyzing the
phase variation of the backscatter signals.

Compared to those works, Bifrost utilizes tags (i.e., LWAs) to
create FSDM signals to localize another target, rather than the tag
itself.

7 CONCLUSION
This paper introduces Bifrost, a low-cost and plug-and-play tech-
nique to enhance the availability and accuracy of WiFi localization.
It can either aid existing techniques to improve their performance,
or operate independently to outperform the state of the arts in
arguably realistic indoor settings, without affecting ongoing data
communication of WiFi networks. What sets Bifrost apart from
other solutions is the exploration in the polarization of wireless
signals and the dispersion property of LWAs, which embodies the
concept of RF computing [15, 29, 53, 55]. We plan to explore the
research space further in this direction.
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